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Abstract
Contact constraints arise naturally in many robot planning problems. In recent years, a variety of contact-
implicit trajectory optimization algorithms have been developed that avoid the pitfalls of mode pre-specification by
simultaneously optimizing state, input, and contact force trajectories. However, their reliance on first-order integrators
leads to a linear tradeoff between optimization problem size and plan accuracy. To address this limitation, we propose a
new family of trajectory optimization algorithms that leverage ideas from discrete variational mechanics to derive higher-
order generalizations of the classic time-stepping method of Stewart and Trinkle. By using these dynamics formulations
as constraints in direct trajectory optimization algorithms, it is possible to perform contact-implicit trajectory optimization
with significantly higher accuracy. For concreteness, we derive a second-order method and evaluate it using several
simulated rigid body systems, including an underactuated biped and a quadruped. In addition, we use this second-order
method to plan locomotion trajectories for a complex quadrupedal microrobot. The planned trajectories are evaluated
on the physical platform and result in a number of performance improvements.
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Introduction

Trajectory optimization algorithms comprise a powerful
collection of methods for planning motions of nonlinear
dynamical systems (Betts 1998). Generally speaking, these
algorithms aim to find an input trajectory that minimizes a
cost function subject to a set of constraints on the system’s
states and inputs. Trajectory optimization has a long history
of successful application to systems with smooth dynamics.
However, many robotic systems experience discontinuous
frictional contact with the environment as an essential
part of their routine operation. The non-smooth dynamics
encountered in these situations pose significant challenges.

A popular approach for handling contact events is to use a
hybrid system model in which discontinuities are explicitly
enumerated (Posa et al. 2016). However, contact mode
sequences must then be pre-specified by the user or generated
by a higher-level heuristic planner. This approach can work
quite well for systems with a small number of contacts (Buss
et al. 2003; Mombaur 2009; Schultz and Mombaur 2010;
Remy 2011; Xi and Remy 2014). Unfortunately, for more
complex systems, the number of modes grows exponentially
with the number of contact constraints, making mode
sequence pre-specification impractical.

Recently, an alternative approach has emerged in which
state, input, and contact force trajectories are simultaneously
optimized (Posa et al. 2014; Mordatch et al. 2012; Tassa
et al. 2012). These so-called contact-implicit trajectory
optimization methods can synthesize motions without
a priori specification of the contact mode sequence.
However, current state-of-the-art algorithms rely on first-
order discretizations of the dynamics constraints, severely

limiting accuracy and closed-loop trajectory tracking
performance (Xi and Remy 2014; Posa et al. 2016).

To overcome the accuracy limitations of current algo-
rithms, we propose a new family of variational contact-
implicit methods that combine ideas from discrete variational
mechanics with the complementarity formulation of rigid
body contact to achieve higher-order integration accuracy.
For simplicity and concreteness, we provide an explicit
derivation of a second-order method. However, the mathe-
matical tools used are general, and can be applied to derive
integrators of arbitrary order.

The remainder of the paper is organized as follows:
the Related Work section provides a summary of work
on trajectory optimization through contact. Next, the
Preliminaries section gives a brief review of some important
concepts from both classical variational mechanics and
discrete mechanics. In the Variational Time-Stepping
Methods section we derive the new variational rigid
body time-stepping scheme, and in the Direct Trajectory
Optimization section a direct trajectory optimization
algorithm is built around these dynamics. Several simulation
examples that demonstrate the performance of the new
algorithm are then presented in the Numerical Examples
section. We also evaluate the performance of the algorithm
in hardware on a complex quadrupedal microrobot platform
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in the Hardware Implementation section. Finally, we
summarize our findings in the Conclusions section.

Related Work
At the core of our approach is the use of variational inte-
grators as dynamics constraints in trajectory optimization.
While not previously associated with contact dynamics, this
idea has been explored by Junge et al. (2005), and has
been termed “Discrete Mechanics and Optimal Control”
(DMOC).

In spite of their limitations, hybrid trajectory optimiza-
tion algorithms that rely on a pre-specified contact mode
sequence have had a number of notable successes. For
example, hybrid multiple-shooting algorithms have been
used to find open-loop stable walking trajectories for a two-
dimensional model of a humanoid (Mombaur 2009) and
to study the energetics of quadrupedal locomotion (Remy
2011). Hybrid collocation methods with third-order integra-
tion accuracy have also been demonstrated on a full-body
model of a humanoid (Posa et al. 2016).

Much of the recent work on contact-implicit methods has
focused on approximation schemes to smooth discontinu-
ities. Several authors have developed indirect trajectory opti-
mization algorithms based on differential dynamic program-
ming (DDP) (Mayne 1966) that apply a smoothing function
to the contact constraints (Tassa et al. 2012) or penalize
constraint violations in the objective function (Todorov 2011;
M. Neunert et al. 15). The penalty approach has also been
applied in direct trajectory optimization methods (Mordatch
et al. 2012). These algorithms have been used to plan
motions for quadrupeds (M. Neunert et al. 15) and simplified
humanoids (Todorov 2011; Tassa et al. 2012; Mordatch et al.
2012) in simulation.

Another method for handling contact in trajectory
optimization algorithms is to use a spring-and-damper model
to generate contact forces. Such approaches often require
very large spring stiffness and damping constant values
to achieve realistic behavior, necessitating very small step
sizes (Stewart 2000). However, M. Neunert et al. (2017)
have reported positive results using a nonlinear spring-and-
damper model as part of a DDP-based algorithm. Their work
is particularly notable for its successful demonstration in
hardware experiments on a quadrupedal robot.

The previous work most closely related to the present
paper is that of Posa et al. (2014). Their algorithm attempts
to accurately capture discontinuous rigid-body physics
by relying on the “time-stepping” linear complementarity
formulation of Stewart and Trinkle (Stewart and Trinkle
1996; Anitescu and Potra 1997). The essential idea behind
time-stepping methods for simulating rigid-body dynamics
is to apply a first-order semi-implicit Euler discretization to
the dynamics,

M(qk)(vk+1 − vk) =

h
(
B(qk)uk +N(qk)T γk − C(qk, vk+1)

)
, (1)

qk+1 = qk + hvk+1,

where k is a time index; q ∈ RNq , v ∈ RNv , u ∈ RM , and
γ ∈ RP are configurations, velocities, control inputs, and
normal contact impulses acting over a timestep of length

h, respectively; M is the system’s mass matrix; B and
NT are the Jacobians mapping control inputs and normal
contact forces into generalized coordinates; and C includes
Coriolis and potential terms. We have temporarily ignored
the tangental (friction) component of the contact force for
clarity, but it is discussed extensively in the Coulomb Friction
section below. For the normal impulse, we have the following
constraints:

γk ≥ 0

φ(qk+1) ≥ 0

γkφ(qk+1) = 0,

(2)

where φ(q) is a function that returns the signed distance
between closest points on bodies.

In words, the conditions in equation (2) specify that
normal forces can only push bodies apart (not pull them
together), that bodies cannot interpenetrate, and that contact
forces can only be non-zero when bodies are in contact. The
combination of (1) and (2) forms a linear complementarity
problem (LCP) that can be solved efficiently (Anitescu and
Potra 1997). However, this formulation depends crucially
on the particular choice of first-order discretization used
in (1). While it may be possible to apply a higher-order
discretization scheme in an ad hoc way, it is not obvious
how to do so while still satisfying the contact constraints. To
overcome this limitation, the next few sections introduce a
set of mathematical tools for systematically deriving time-
stepping methods with any desired order of integration
accuracy.

Preliminaries
This section reviews some classical results from variational
mechanics, as well as some more recent results from discrete
mechanics.

Lagrange-D’Alembert Principle
Our starting point is the Lagrange-D’Alembert principle,
which is the integral form of D’Alembert’s principle of
virtual work (Marsden and Ratiu 1999), and can also be
thought of as a modification of Hamilton’s principle of
least action (Goldstein et al. 2001) to accommodate external
forces:

δ

∫ tf

t0

L(q, q̇) dt+

∫ tf

t0

F · δq dt = 0. (3)

We use L to denote the system’s Lagrangian, F to denote
a generalized force, and δ to indicate a variation. Equation
(3) describes a boundary-value problem in which a trajectory
q(t) is sought given fixed end points q(t0) and q(tf ).

We now review the steps used to derive the classical forced
Euler-Lagrange equation from (3). Applying the chain rule
results in,∫ tf

t0

(
D1L(q, q̇) · δq +D2L(q, q̇) · δq̇

)
dt

+

∫ tf

t0

F · δq dt = 0, (4)

where we have used the slot derivative Di to indicate partial
differentiation with respect to a function’s ith argument. The
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next step is to eliminate δq̇ by performing an integration by
parts:

∫ tf

t0

(
D1L(q, q̇)− d

dt
D2L(q, q̇) + F

)
· δq dt

+D2L(q(tf ), q̇(tf )) · δq(tf )

−D2L(q(t0), q̇(t0)) · δq(t0) = 0. (5)

The fact that the end points q(t0) and q(tf ) of the boundary
value problem are fixed, and thus δq(t0) = δq(tf ) = 0, can
be used to eliminate the last two terms in (5):∫ tf

t0

(
D1L(q, q̇)− d

dt
D2L(q, q̇) + F

)
· δq dt = 0. (6)

Finally, recognizing that equation (6) must hold for all
variations δq, we arrive at the classical forced Euler-
Lagrange equation:

d

dt
D2L(q, q̇)−D1L(q, q̇) = F. (7)

By substituting a Lagrangian of the form,

L(q, q̇) =
1

2
q̇TM(q)q̇ − V (q), (8)

into equation (7), where M(q) is a positive-definite mass
matrix and V (q) is a potential energy function, the
familiar manipulator equation can be recovered by a simple
application of the chain rule:

M(q)q̈ + C(q, q̇) +G(q) = F, (9)

where C(q, q̇) includes Coriolis terms and G(q) = ∇V (q)
accounts for conservative forces. Rather than discretizing (9)
in time, as in most prior work, our approach builds on ideas
from discrete mechanics.

Discrete Mechanics
Discrete mechanics encompasses a set of mathematical tools
for deriving specialized numerical integrators for mechanical
systems. These so-called variational integrators have many
advantages over traditional Runge-Kutta schemes, including
realistic long-term energy and momentum behavior (Mars-
den and West 2001). While often associated with simula-
tions of energy-conserving systems, variational integrators
can also be applied to non-conservative systems subject to
external forces and control inputs (Junge et al. 2005).

Inspired by the numerical methods used to solve optimal
control problems, the strategy behind discrete mechanics is
to approximate the integrals in the Lagrange-D’Alembert
principle (3) with a quadrature rule before taking variations.
We begin by breaking those integrals into N smaller pieces,

δ

N−1∑
k=0

∫ tk+1

tk

L(q, q̇) dt+

N−1∑
k=0

∫ tk+1

tk

F (q, q̇) · δq dt = 0,

(10)
where tk = t0 + kh and h is a small timestep. Each short
integral in equation (10) is then approximated. While any
quadrature rule can be used for this purpose, we will use the

midpoint rule for simplicity and clarity:

δ

N−1∑
k=0

hL
(
qk + qk+1

2
,
qk+1 − qk

h

)

+

N−1∑
k=0

hF

(
qk + qk+1

2
,
qk+1 − qk

h

)
·
(
δqk + δqk+1

2

)
= 0. (11)

Equation (11) can be written more compactly as,

δ

N−1∑
k=0

Ld(qk, qk+1)

+

N−1∑
k=0

1

2
Fd(qk, qk+1) · (δqk + δqk+1) = 0, (12)

where Ld is known as the discrete Lagrangian,

Ld(qk, qk+1) = hL
(
qk + qk+1

2
,
qk+1 − qk

h

)
, (13)

and Fd is called the discrete generalized force,

Fd(qk, qk+1) = hF

(
qk + qk+1

2
,
qk+1 − qk

h

)
. (14)

Note that both the discrete Lagrangian and discrete
generalized force depend on our particular choice of
quadrature rule and, as a result, many different definitions
are possible (Marsden and West 2001).

We now apply the chain rule to the variation in (12):

N−1∑
k=0

(
D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1

)
+

N−1∑
k=0

1

2
Fd(qk, qk+1) · (δqk + δqk+1) = 0. (15)

Paralleling the derivation of the classical Euler-Lagrange
equation in the previous section, we perform the discrete-
time equivalent of integration by parts to line up the time
indices of the δq terms. This amounts to a simple index
manipulation trick:

D1Ld(q0, q1)δq0 +
1

2
Fd(q0, q1) · δq0

+

N−1∑
k=1

(
D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+
1

2
Fd(qk−1, qk) +

1

2
Fd(qk, qk+1)

)
· δqk

+D2Ld(qN−1, qN )δqN +
1

2
Fd(qN−1, qN ) · δqN = 0.

(16)

As in the continuous case, the endpoints q0 and qN are fixed.
As a result, δq0 = δqN = 0, and the first and last terms in

Prepared using sagej.cls



4 Journal Title XX(X)

(16) can be eliminated:

N−1∑
k=1

(
D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+
1

2
Fd(qk−1, qk) +

1

2
Fd(qk, qk+1)

)
· δqk = 0. (17)

Finally, using the fact that equation (17) must hold for
all variations δqk, we arrive at the following discrete-time
version of the forced Euler-Lagrange equation:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+
1

2
Fd(qk−1, qk) +

1

2
Fd(qk, qk+1) = 0. (18)

Equation (18) can be used to simulate the dynamics of a
mechanical system by inserting values for qk−1 and qk and
solving for qk+1. In fact, it is equivalent to the implicit
midpoint method.

An important result in the theory of discrete mechanics
is that the order of accuracy associated with a variational
integrator is equal to the order of accuracy of the quadrature
rule used to define the discrete Lagrangian and discrete
generalized force (Marsden and West 2001). Since the
midpoint rule has a global error of O(h2), an integrator
based on (18) inherits this second-order accuracy. Variational
integrators of any desired order can be derived by simply
choosing an appropriate quadrature rule (Ober-Blobaum and
Saake 2015).

Variational Time-Stepping Methods
Time-stepping methods for simulating rigid body dynam-
ics with contact were first proposed by Stewart and Trin-
kle (Stewart and Trinkle 1996). The essential idea is to deal
with the discontinuities that occur during rigid body impacts
by formulating the dynamics at the level of impulses and
velocities, rather than forces and accelerations. The contact
impulse produced during a timestep, together with the next
state, is computed by solving a constrained optimization
problem.

Since variational integrators like (18) are also formulated
in terms of impulses and avoid direct computation of forces
and accelerations, they are a natural choice for handling rigid
body contact dynamics. In this section, we derive a time-
stepping method with second-order integration accuracy. We
treat only the case of perfectly inelastic collisions, however
extension to the elastic case is possible along the same lines
used in existing time-stepping schemes (Anitescu and Potra
1997).

Interpenetration and Complementarity
Interpenetration must not occur between rigid bodies.
Mathematically, this constraint can be expressed as an
inequality,

φ(q) ≥ 0, (19)

where φ(q) is a vector-valued function that evaluates the
signed distance between closest points on all pairs of bodies.

To build a variational integrator that respects the
interpenetration constraint, we add it to the discrete

Lagrange-D’Alembert principle (12) with a corresponding
Lagrange multiplier, γ:

δ

N−1∑
k=0

Ld(qk, qk+1) + γTk φ(qk+1)

+

N−1∑
k=0

1

2
Fd(qk, qk+1) · (δqk + δqk+1) = 0. (20)

Note the deliberate choice of time indices in the constraint
term γTk φ(qk+1) to indicate that the next state must always
satisfy the inequality φ(qk+1) ≥ 0.

Following the same steps used to derive equation (18) in
the previous section, we find,

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) +
1

2
Fd(qk−1, qk)

+
1

2
Fd(qk, qk+1) +N(qk+1)T γk = 0, (21)

where N(q)T = (∂φ/∂q)T is the Jacobian mapping normal
contact forces into generalized coordinates. In addition,
solutions to (21) must satisfy the following conditions:

γk ≥ 0

φ(qk+1) ≥ 0

γTk φ(qk+1) = 0.

(22)

Together, (21) and (22) form the first-order necessary condi-
tions, known as Karush-Kuhn-Tucker (KKT) conditions, for
an inequality constrained optimization problem (Boyd and
Vandenberghe 2004).

Physically, the Lagrange multiplier, γk, takes on the
magnitude of the contact impulse in the normal direction.
The three conditions in (22) are collectively known as
a complementarity constraint. In addition to preventing
interpenetration, they ensure that contact forces can only
push bodies apart (not pull them together), and that contact
forces can only act when bodies are in contact. Such
constraints are commonly denoted using the following
shorthand notation:

0 ≤ γk ⊥ φ(qk+1) ≥ 0. (23)

Intuitively, complementarity constraints express discon-
tinuous “switching” behavior: only one variable or the other
is allowed to be non-zero at a time. They are an inherent
feature in many models of contact physics.

Coulomb Friction
Coulomb friction exerts forces in the plane tangent to the
contact surface between two bodies. It can be described by
the Maximum Dissipation Principle (Moreau 1973), which
states that friction forces maximize the rate of dissipation
of kinetic energy. Mathematically, this can be posed as the
following optimization problem,

minimize
b

q̇TDT b

subject to ‖b‖ ≤ µγ,
(24)

where b is the friction force in the contact tangent plane,
µ is the friction coefficient, DT is the Jacobian mapping
tangential contact forces into generalized forces.
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The second-order cone constraint in (24) is known as the
friction cone. Because it is not differentiable at b = 0, this
constraint can pose difficulties for general-purpose nonlinear
optimization solvers (Vanderbei and Yurttan 1998). For this
reason, an inner approximation of the friction cone is often
made using a polyhedron (Stewart and Trinkle 1996). For the
specific case of a four-sided pyramid, this is accomplished by
defining a new friction vector β with twice as many elements
as b, enforcing the constraint β ≥ 0, and forming a new
Jacobian matrix (Anitescu and Potra 1997):

P =

[
D
−D

]
. (25)

With this approximation, the optimization problem (24)
becomes,

minimize
β

q̇TPTβ

subject to µγ − eTβ ≥ 0

β ≥ 0

(26)

where e is a vector of ones.
The set of first-order necessary conditions (KKT

conditions) for an optimum of (26) are,

P q̇ + ψe− η = 0

β, ψ, η ≥ 0

µγ − eTβ ≥ 0

ψT
(
µγ − eTβ

)
= 0

ηTβ = 0,

(27)

where ψ and η are Lagrange multipliers. In the more compact
shorthand notation introduced in the previous subsection,
these conditions can be rewritten as:

P q̇ + ψe− η = 0

0 ≤ ψ ⊥
(
µγ − eTβ

)
≥ 0

0 ≤ η ⊥ β ≥ 0.

(28)

Physically, the Lagrange multiplier ψ approximates the
projection of the system’s velocity onto the plane tangent
to the contact manifold. The conditions in (28) ensure that
the friction force will assume whatever value is necessary
to prevent sliding when ψ = 0, up to the boundary of the
friction cone. In the sliding case, when ψ 6= 0, the friction
force will lie on the boundary of the friction cone.

A Second-Order Time-Stepping Method
We now build a complete time-stepping method by
combining the results of the previous sections. We first
define a vector, λ, that combines the normal and friction
components of the contact impulse,

λ =

[
γ
β

]
, (29)

and the corresponding Jacobian matrix to map λ into
generalized coordinates:

J =

[
N
P

]
. (30)

The discrete Euler-Lagrange dynamics can then be written as
follows:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+
1

2
Fd(qk−1, qk) +

1

2
Fd(qk, qk+1) + J(qk+1)Tλk = 0.

(31)

The set of complementarity conditions derived in the
previous subsections are used to determine λk in (31). Given
qk−1 and qk, the following feasibility problem can be solved
to find λk and qk+1,

r(h, qk−1, qk, qk+1, λk) = 0

P (qk+1)

(
qk+1 − qk

h

)
+ ψke− ηk = 0

0 ≤ (µγk − eTβk) ⊥ ψk ≥ 0

0 ≤ φ(qk+1) ⊥ γk ≥ 0

0 ≤ βk ⊥ ηk ≥ 0,

(32)

where r(h, qk−1, qk, qk+1, λk) = 0 refers to equation (31).

Direct Trajectory Optimization
We now propose a direct trajectory optimization algorithm
that uses the variational time-stepping scheme developed in
the previous section as a set of dynamics constraints. Our
strategy is to formulate the trajectory optimization problem
as a nonlinear program (NLP) and solve it using standard
constrained optimization software.

To ease the numerical difficulties associated with
complementarity constraints, we apply a smoothing scheme
similar to that used by Fletcher and Leyffer (2004). The
key idea is to relax the equality constraints in the three
complementarity conditions in (32) by replacing them with
inequalities and introducing slack variables sk:

r(h, qk−1, qk, qk+1, λk) = 0

P (qk+1)

(
qk+1 − qk

h

)
+ ψke− ηk = 0

λk, ψk, ηk, sk ≥ 0

φ(qk+1) ≥ 0

(µγk − eTβk) ≥ 0

sk − ηTk βk ≥ 0

sk − γTk φ(qk+1) ≥ 0

sk − ψTk (µγk − eTβk) ≥ 0.

(33)

Figure 1 illustrates the feasible regions for both the original
“strict” complementarity constraints and the new relaxed
complementarity constraints in (33). If the slack variables are
reduced to zero, the two regions coincide.

Physically, the relaxed complementarity constraints allow
contact forces to act at a non-zero distance from the
contact manifold. This aids numerical convergence, but
we ultimately want solutions to closely respect the
true constraints. To encourage convergence of solutions
towards strict satisfaction of the original complementarity
constraints, we augment the cost function with a term that
penalizes sk. The complete trajectory optimization problem
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Relaxed Feasible Region
Strict Feasible Region

Figure 1. Illustration of feasible regions for relaxed and strict
complementarity constraints.

can then be stated as the following NLP:

minimize
h,Q,U, C

J(h,Q,U) + α

N−1∑
k=1

sk

subject to f(h, qk−1, qk, qk+1, λk, ψk, ηk) = 0

g(qk+1, λk, ψk, ηk, sk) ≥ 0

umin ≤ uk ≤ umax
hmin ≤ h ≤ hmax,

(34)

where J is a cost function, α is a positive scalar weighting
parameter, f and g are the equality and inequality constraints
in (33), Q is the set of all configuration knot points, qk, U is
the set of all control inputs, uk, and C is the set of all contact-
related variables, λk, ψk, ηk, and sk.

The penalty on the slack variables in the the cost function
of (34) is a so-called “exact penalty” that has theoretical
convergence guarantees with finite values of α (Anitescu
2005). In practice, we have observed good convergence
behavior with modest values of α. Problem (34) can be
solved with standard nonlinear programming algorithms
like sequential quadratic programming (SQP) and interior-
point methods (Nocedal and Wright 2006), and we use
the commercially available constrained optimization solver
SNOPT. It is also straight-forward to include additional
constraints on the system’s state and inputs.

Numerical Examples

To evaluate the proposed trajectory optimization algorithm,
we demonstrate its ability to generate complex, multi-
contact motions by optimizing walking trajectories for two
simulated legged robots: Spring Flamingo and LittleDog.
Our implementation of this algorithm was written in
MATLAB R2016a using the dynamics and control toolbox
Drake written by Tedrake and the Drake Development Team
(2016). We also compared its accuracy to the first-order
method used by Posa et al. (2014) in both open- and closed-
loop simulations. In all cases, the optimizer was initialized
with dynamically infeasible trajectories consisting of simple
linear interpolation between initial and goal states. No a
priori information about contact forces or mode sequences
was used.

Spring Flamingo
Spring Flamingo is an 18-state planar bipedal robot with
actuated hips and knees and a passive spring ankle joint (J.
Pratt and G. Pratt 1998). A trajectory optimization problem
was defined in which the robot was required to move from
an initial standing pose to a final standing pose translated to
the left. The following cost function was minimized,

J =

N−1∑
i=1

0.1(xi − xg)T (xi − xg) + uTi ui, (35)

where xg is the goal state. Figure 2 shows a sequence of
frames taken from the optimized walking gait. The algorithm
produced an energetically efficient heel-toe gait that exploits
the passive dynamics of the leg and ankle.

LittleDog
LittleDog is a 36-state quadrupedal robot designed by Boston
Dynamics to enable research on legged locomotion (Buchli
et al. 2010). A trajectory optimization problem was defined
in which the robot was required to climb up an 11 cm step.
Once again, initial and final state constraints were enforced
and a simple quadratic cost function was minimized. Figure 3
shows an example climbing strategy and Figure 4 shows
the corresponding sequence of modes (combinations of foot
contacts) that were generated by the solver.

Computational Cost
We now compare the computational cost of the first-order
time-stepping dynamics used by Posa et al. (2014) to our
second order method for the Spring Flamingo and LittleDog
examples described in the previous section. Five trajectory
optimizations were run using the first- and second-order
methods for each example on an Intel-Core i5-6400 CPU
with four 2.7 GHz cores and 8 GB of RAM. The mean
running time to convergence ± one standard deviation is
reported in Table 1 below.

Table 1. Running time of first and second order methods.

Numerical
Example

1st-order
(min.)

2nd-order
(min.)

Spring
Flamingo

4.30± 1.72
(n=5)

4.91± 2.17
(n=5)

Little
Dog

38.77± 4.50
(n=5)

52.34± 6.36
(n=5)

Furthermore, the maximum slack variables for all ten trials
using the second order method were less than the solver
tolerances (10−4 for the Spring Flamingo and 10−5 for
LittleDog) at convergence. This indicates that the solutions
respect the true complementarity constraints and the second
order method does not return solutions in the relaxed
feasibility region. On the other hand, the first order method
had difficulty finding a solution that respected the strict
feasibility region for the LittleDog step-up example.

Simulation Accuracy
We also compare the first-order time-stepping dynamics used
by Posa et al. (2014) to our second-order variational time-
stepping method in open-loop simulations of a tumbling
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Figure 2. Optimized walking gait for the Spring Flamingo robot. Figure 3. LittleDog climbing a step.
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Figure 4. Contact mode sequence for each foot from LittleDog
step-climbing example.

brick hitting the ground and closed-loop simulations of
the LittleDog robot tracking a walking trajectory with
proportional-derivative (PD) feedback control applied to
its joints. Tumbling-brick simulations were initialized with
twenty different randomly chosen initial conditions while
varying the number of trajectory knot points. A reference
solution was computed using the first-order method at a
sample rate of 2 kHz. Figure 5 shows the root mean
square (RMS) error (compared to the reference solution)
as a function of the number of knot points. The variational
method achieves better accuracy with fewer knot points
(lower sampling rates) than the first-order time-stepping
method.
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Figure 5. Falling brick simulation RMS error and standard
deviation

To test closed-loop tracking performance, a set of walking
trajectories were optimized using both the first-order method
of (Posa et al. 2014) and the second-order variational
method. The number of knot points used to parameterize the
trajectories was varied between 10 and 40. Simple PD control
was applied to each joint of the robot, and simulations were
performed using the first-order method at a sample rate of 2
kHz. Figure 6 shows the RMS tracking error in the robot’s
state.

The first- and second-order methods generate qualitatively
similar plans and have similar running times. However, due
to the improved accuracy of the second-order dynamics
formulation, the plans generated using the second-order
method achieve better closed-loop tracking performance
with fewer knot points than the first-order method.
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Figure 6. RMS tracking error for LittleDog walking with PD
tracking controller.

Hardware Implementation
To demonstrate the practical utility of the new algorithm, its
performance was evaluated on a quadrupedal microrobot, the
Harvard Ambulatory MicroRobot (HAMR-VI, Fig. 7). This
robot is fabricated using laminate manufacturing techniques
(Whitney et al. 2011), is 4.51 cm long, weighs 1.5 g, and
has eight independently actuated degrees-of-freedom (Doshi
et al. 2015). Each leg has two degrees-of-freedom that
are driven by optimal-energy-density piezoelectric bending
actuators (Jafferis et al. 2015). A flexure-based spherical-
five-bar (SFB) transmission connects the two actuators to a
single leg in a nominally decoupled manner: one actuator
controls leg swing (x-direction) motion, while the other
actuator controls leg lift (z-direction) motion.

The dynamics of the SFB transmissions are assumed
to follow the pseudo-rigid body approximation with
flexures approximated using pin-joints (Howell 2001). Given
this assumption, each SFB transmission has two inputs
(forces generated by the actuators), and eight generalized
coordinates. These include two independent coordinates
(actuator tip deflections) and six dependent coordinates (a
subset of flexure joint angles). The motion of the dependent
coordinates is constrained by the parallel kinematics of the

0 ms 92 ms 224 ms

1 cm

Figure 7. Still frames of HAMR-VI executing a vertical jump.
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transmission. Thus, a complete model of the robot has eight
inputs (actuator drive voltages), 38 generalized coordinates
(76 states), and 24 position constraints. In addition,
each transmission has a natural frequency experimentally
determined to be near 100 Hz (Doshi et al. 2017). The
combination of a high-dimensional state and high-frequency
passive dynamics make trajectory optimization for HAMR-
VI a particularly challenging problem.

HAMR Trajectory Optimization
We performed a number of trajectory optimizations to
search for periodic gaits that achieve forward velocities
of approximately 10 mm per cycle near stride frequencies
of 2 Hz, 10 Hz, and 30 Hz on three different surfaces:
Teflon, card-stock, and 1200 grit sandpaper. A distance of
10 mm is nearly twice the robot’s step length, approaching
the theoretical kinematic limit for a two-beat gait. In
addition, the selected frequencies represent three different
operational regimes for the microrobot as discussed by
Goldberg et al. (2017b): quasi-static (2 Hz), near the vertical
natural frequency (10 Hz) of the system, and near the roll
natural frequency (30 Hz) of the system. Finally, these
nine gaits cover a wide-range of ground contact conditions
with coefficients of friction ranging from 0.29 to 1.02,
demonstrating the versatility of the new algorithm.

The NLP presented in (34) was modified to search for
periodic state and input trajectories by adding periodicity
constraints on all position and velocity decision variables
except the x-position of the body. We used the following
cost function to encourage the robot to achieve its maximum
theoretical stride length:

J = (xN − xg)TQ(xN − xg)

+

N−1∑
i=2

c1
2

∆q̇Ti ∆q̇i +
1

2
∆uTi ∆ui,

(36)

where ∆q̇i = q̇i − q̇i−1 and ∆ui = ui − ui−1 are the
difference between neighboring generalized velocities and
control inputs, respectively. Q is a diagonal matrix with
Q11 ∈ [10, 50] and the remaining diagonal entries equal
to one, c1 ∈ [10, 50] scales the velocity difference penalty,
and xg is a goal state. To aid convergence and reduce
susceptibility to local minima, the solver was initialized
with an empirically generated trot gait that achieves roughly
periodic motion for the card-stock friction coefficient. The
goal state is set to xg = [10, xp]

T , where xp ∈ R75 is the
periodic subset of the initial state.

A vertical jump trajectory of approximately one center-
of-mass (COM) height was also optimized. The following
cost function, which encourages the microrobot to jump to a
specified height, was minimized:

J = (xN − xg)TQ(xN − xg) +

N−1∑
i=1

1

2
uTi Rui. (37)

Here xg = [02×1, 24, 073×1]T is a goal state that specifies the
desired apex height of the jump (slightly less than twice the
COM height) with no body rotation or horizontal motion.
The quadratic input cost penalizes swing actuator voltages
as fore/aft forces do not contribute significantly to a vertical

1cm1cm card-stock

0.00s

0.40s

1.64s

2.36s

2.00s

1cm card-stock

0.00s

0.40s

1.64s

2.36s

2.00s

1cm card-stock

0.00s

0.40s

1.64s

2.36s

2.00s

Figure 8. Still frames of HAMR-VI (left), and a simulation of
HAMR-VI (right) ambulating at 2Hz on a card-stock surface.

jump. To improve convergence time and avoid poor local
optima, the optimization was initialized with a heuristically
designed nominal jump trajectory.

As with the simulation examples, these ten trajectory
optimization problems were implemented in MATLAB
R2016a using the dynamics and control toolbox Drake. Due
to the complexity of the HAMR model, these optimizations
took several hours to converge.

Locomotion Experiments

The actual performance of the microrobot when executing
the planned trajectories from the previous section was
evaluated in a controlled 20 cm × 20 cm motion-capture
arena. Input signals were generated at 2.5 kHz using
a MATLAB xPC environment (MathWorks, MATLAB
R2015a), and were supplied to the microrobot through a
ten-wire tether. Five motion capture cameras (Vicon T040)
track the position and orientation of the robot body and the
position of the feet at 500 Hz with a latency of 11 ms. In
addition, eight piezoelectric encoders provide low-latency
estimates of actuator tip velocities at 2.5 kHz (Jayaram
et al. 2018). An estimator that combines foot-position
and actuator-velocity measurements to generate low-latency
estimates of the leg positions was developed. Finally, a
proportional-derivative (PD) controller was implemented to
track the desired positions of the microrobot’s four legs in the
body-fixed frame. The details of the motion capture arena,
estimator, and tracking controller are provided by Doshi et al.
(2018).
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Figure 9. Mean per-cycle forward velocity for the optimized
(orange), closed-loop experimental (blue), and manually tuned
(gray) trajectories. Error bars represent one standard deviation
(n=15).

Performance Improvements

Control signals for periodic locomotion trajectories of
HAMR were previously manually designed. This process
involves tuning a series of parameters including input
voltage, stride frequency, and relative phasing between the
eight actuated degrees of freedom. Finding periodic control
signals to produce a desired gait is often time consuming,
requiring hundreds of experiments (Goldberg et al. 2017a,b).
The new trajectory optimization method, in contrast, was
able to generate open-loop control signals that offer
improved performance without exhaustive experimentation.

The 2 Hz closed-loop experimental trajectories achieved
an average velocity of 9.77 mm/cycle (Fig. 9a), which is
within 5% of the goal speed of 10 mm/cycle. These gaits also
performed 26% better than the previous-best manually tuned
gaits. In addition, the planned body pose closely matched that
executed by the robot (Fig. 8), demonstrating the accuracy
of the trajectory optimization scheme. At 10 Hz, the closed-
loop experimental trajectories achieved an average velocity
of 8.98 mm/cycle, which is close to the desired velocity and
10% faster than the best manually tuned gaits. The card-
stock gait at this frequency achieved the fastest per-cycle
velocity recorded for this robot at 10.87 mm/cycle. Finally,
the average velocity for the 30 Hz closed-loop gaits was
slower at 4.24 mm/cycle. The closed-loop experiments on
sandpaper and card-stock, however, were still 20% percent
faster than the best manually tuned gaits and within 20% of
the predicted velocities from the optimizer. The robot also
maintained the desired gait timing (front legs depicted in Fig.
9b), and tracked the optimized leg trajectories in the body
frame (front left leg depicted in Fig. 9c) for all experiments
except at 30 Hz on Teflon. Finally, we used this method to
execute a vertical jump of 9.96 mm, which is approximately
78% of the robot’s COM height (Fig. 7). This was more
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Figure 10. Optimized (orange) and mean closed-loop
experimental (blue) leg height for the front left (solid) and front
right (dashed) leg.

than twice the jump height of 4.72 mm achieved under the
heuristically designed jump trajectory that the optimizer was
initialized with.

In summary, our model-based approach yielded improve-
ments over previous experimental results (Goldberg et al.
2017a,b). Specifically, the average velocity of 9.21 ±
1.31 mm/cycle achieved across the six gaits at 2 and 10 Hz is
comparable to the highest previously measured experimental
velocity of 9.5 mm/cycle achieved using careful hand tuning
on card-stock surface (Goldberg et al. 2017a). Even the
three slower 30 Hz gaits move on average 30% faster than
previously recorded trots at similar frequencies on a card-
stock surface. Additionally, the robot was able to achieve
a new highest velocity of 10.87 mm/cycle, and demonstrate
the first controlled vertical jump of 9.96 mm (78% of COM
height). Importantly, these performance improvements were
achieved without exhaustive experimentation: tens of exper-
iments were conducted as opposed to hundreds.

Quality of Optimized Trajectories
We evaluated the quality of the periodic trajectories by
measuring the normalized average slip, s̄, commonly defined
as (Jayaram and Full 2016; Ridgel et al. 2003):

s̄ =
1

4
∫ tf
t0
vx(t)dt

4∑
i=1

∫
ξ

|vix(t)|dt. (38)

Here, vix is the x-velocity of the ith leg and vx is the
x-velocity of the center of mass, both in the world-fixed
frame as measured by the motion capture system. The time
interval of interest is bounded by t0 and tf , and ξ is the
set of times for which vix < 0. Normalized slip is the total
distance a single leg travels backwards in the world frame
divided by the forward distance traveled by the body. We
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Figure 11. Optimized (orange) and mean closed-loop
experimental (blue) periodic foot trajectories for the front left leg.
The blue shaded region represents one standard deviation
(n=15).

present an average value for all four legs. Higher values of
s̄ indicate increased backwards motion of the legs, decreased
propulsion, and reduced performance. The average value of
s̄ was 0.10± 0.06 (n = 9) for the optimized trajectories,
which is expected since we demand high performance from
the robot. The closed-loop experimental trajectories slipped
slightly more, with an average s̄ of 0.24± 0.14 (n = 9).
This is similar to the average slip of 0.23± 0.11 (n = 9)
across the manually tuned trajectories, and is one of the
factors that could have resulted in decreased performance
when compared to the optimized trajectories. In addition, the
optimizer also found an intuitive jumping trajectory where
all four legs first build spring potential energy, and then
simultaneously push into the ground.

Conclusions
We have presented a new family of variational time-
stepping algorithms that generalize previous methods to
higher orders of integration accuracy. We derived a second-
order method and incorporated it into a direct trajectory
optimization algorithm that solves for contact forces along
with state and input trajectories. Our numerical tests suggest
that the method offers improvements over existing first-
order contact-implicit trajectory optimization algorithms,
allowing smaller NLPs to be solved while maintaining
reasonable accuracy. We also demonstrated the algorithm’s
ability to generate walking trajectories for both simulated
underactuated robots and a physical quadrupedal microrobot
with complex dynamics. Hardware experiments on this
microrobot showed significant improvements over previous
hand-tuned trajectories.

There are several directions for future work. First, a more
extensive numerical comparison including 3rd and 4th-order

time-stepping methods would allow us to better understand
the trade-off between accuracy and computational cost in the
context of motion planning. Second, our current MATLAB
implementation requires several minutes to compute the
SpringFlamingo and LittleDog plans described in the
previous section. Significant speed improvements could be
made with a careful C++ implementation that exploits the
sparsity structure of the problem. Finally, as visible in
figure 4 and as other authors have observed (Mordatch
et al. 2012), the contact mode trajectory often changes
over longer timescales than the state and input trajectories.
Explicitly encoding this into the NLP formulation could aid
convergence and avoid unnecessary contact transitions.
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mechanics and optimal control. IFAC Proceedings Volumes
38(1): 538–543.

M Neunert, F Farshidian, A W Winkler and J Buchli (2017)
Trajectory Optimization Through Contacts and Automatic Gait
Discovery for Quadrupeds. IEEE Robotics and Automation
Letters 2(3): 1502–1509. DOI:10.1109/LRA.2017.2665685.

M Neunert, F Farshidian and J Buchli (15) Efficient whole-body
trajectory optimization using contact constraint relaxation. In:
2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids). pp. 43–48. DOI:10.1109/HUMANOIDS.
2016.7803252.

Marsden J and Ratiu T (1999) Introduction to Mechanics and
Symmetry. Texts in Applied Mathematics, 2 edition. New York:
Springer. ISBN 978-0-387-21792-5.

Marsden JE and West M (2001) Discrete Mechanics and Variational
Integrators. Acta Numerica 10: 357–514.

Mayne DQ (1966) A second-order gradient method of optimizing
non- linear discrete time systems. Int J Control 3: 8595.

Mombaur KD (2009) Using optimization to create self-stable
human-like running. Robotica 27(3): 321–330. DOI:10.1017/
s0263574708004724.

Mordatch I, Todorov E and Popović Z (2012) Discovery of
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