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Abstract— Recent human-in-the-loop (HIL) optimization
studies using wearable devices have shown an improved average
metabolic reduction by optimizing a small number of control
parameters during short-duration walking experiments. How-
ever, the slow metabolic dynamics, high measurement noise, and
experimental time constraints create challenges for increasing
the number of control parameters to be optimized. Prior
work applying gradient descent and Bayesian optimization to
this problem have decoupled metabolic estimation and control
parameter selection using fixed estimation intervals, which
imposes a hard limit on the number of parameter evaluations
possible in a given time budget. In this work, we take a different
approach that couples estimation and parameter selection,
allowing the algorithm to spend less time on refining the
metabolic estimates for parameters that are unlikely to improve
performance over the best observed values. Our approach uses
a Kalman filter-based metabolic estimator to formulate an
optimal stopping problem during the data acquisition step of
standard Bayesian optimization. Performance was analyzed in
numerical simulations and in pilot human subject testing with
two subjects that involved optimizing six control parameters
of a single-joint exosuit and four parameters of a multi-joint
exosuit.

I. INTRODUCTION

Wearable robotic devices are intended as a means to
augment human economy, strength, and endurance. Over
the past decade, a number of devices have been developed
for reducing the metabolic cost of walking for able-bodied
individuals [1]-[7]. With tethered and portable hardware
platforms having advanced considerably [3], [8], [9], it is
now possible to accurately control the shape of assistance
force profiles [1], [10]-[13], which has led to work focused
on how these control parameters influence overall system
performance [11], [12].

The control parameters of assistive devices have tradi-
tionally been optimized through systematic sweeps using
average metabolic response as an objective [4], [14]. Since
inter-subject performance variability has been observed when
applying the same optimized control strategy to multiple
subjects [15], there are significant practical advantages to
efficiently identifying optimal parameter settings on an
individual basis. Recently, several groups have explored
different combinations of devices and optimization algo-
rithms for human-in-the-loop (HIL) optimization [16]-[19].
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These methods generally use an instantaneous metabolic
rate estimate [20] as an objective for optimizing control
parameters [16]-[18], [21]. Given the long timescales of
metabolic dynamics and noisy observations through breath
measurement devices [22], metabolic estimation performance
often becomes a bottleneck that limits the number of samples
achievable in a fixed experimental time window.

Bayesian optimization is a sequential stochastic optimiza-
tion strategy that is well suited for optimizing objective
functions that are noisy and expensive to evaluate [19], [23]-
[25]. The algorithm is typically framed in the context of an
iteration budget, abstracting away the actual data sampling
process that may actually require multiple measurements to
evaluate the objective. The HIL optimization problem, on
the other hand, has a limited time constraint rather than an
iteration budget since participants can only perform for a
fixed interval of time. In previous studies, a fixed observation
time window was used for every sample evaluation, matching
the time constraint to an iteration constraint. This means that
the algorithm can waste valuable time measuring metabolic
data for parameter values that are unlikely to improve upon
the best known values up until that point in the optimization.

In this work, we propose an estimator stopping process of
HIL Bayesian optimization to reduce the total experimental
time and/or accommodate more control parameters within a
given period of time. A stopping rule is determined after ev-
ery respiratory measurement to spend less time on unpromis-
ing parameter settings. We performed simulations based
on previously collected metabolic data to show the time-
efficiency of the proposed method compared to conventional
approaches. In addition, we conducted preliminary human
subject testing with single- and multi-joint soft exosuits to
demonstrate the feasibility of the proposed approach.

II. HIL OPTIMIZATION USING A STOPPING PROCESS

This section describes our approach and presents the three
main components of our algorithm: Bayesian optimization,
metabolic cost estimation, and an estimator stopping process.

A. Approach Overview

The goal of the proposed HIL optimization is to minimize
the metabolic rate with respect to a set of control parameters
in a fixed experimental time period. Note that we will use the
terms “metabolic rate” and “metabolic cost” interchangeable
throughout this paper. Our approach is based on the insight
that for some parameter values, even a very short measure-
ment duration (i.e. a high variance estimate of metabolic



1: Exploration points E

2: Maximum number of measurements N
3: for e in E

4: Estimate e for N measurements ~ N (p., 02)
5: Update training set S U (e, fie)

6: end

7: Determine thresholds from exploration phase A
8: Initialize t =0

9: while ¢t <T

10: Find z; = argmax, EI(z|S)

11: Initialize ¢ = 0

12: Given z* = argmin g iz

13: while : < N

14: Estimate ; ~ N (fz,,02,)

15: B= fz, — Ha>

16: o? = O’?Et + 0'925*

17: if > Ao

18: break

19: end
20: i+=1,t+=1
21: end
22: Update training set S U (x4, iy, )

23: end

Algorithm 1: Bayesian Optimization using an Estimator Stopping
Process. The algorithm starts with an exploration phase of F sample
points using the maximum NN measurements to produce a low-
variance estimate of metabolic rate, after which it proceeds with
the early stopping mechanism until time expires.

cost) can provide enough information to rule them out as
being worse than parameters that have already been tried.
Stopping the metabolic estimation early in such cases leaves
more time in the experimental budget to sample potentially
better parameter values. An outline of the algorithm is shown
in Algorithm 1.

B. Bayesian Optimization
Bayesian optimization solves problems of the form:

2* = argmin f(x),
rzeX

where X C R?, d is dimensionality of the parameter space,
and f is an unknown, noisy function that is expensive to
evaluate [26]. In the HIL setting, the algorithm proceeds
by computing a posterior distribution over metabolic cost
functions, f(z), given all previous evaluations and then
maximizing an acquisition function on this distribution to
globally select the next control parameter value, x, to evalu-
ate. The distribution over f is modeled as a Gaussian process
(GP) [27], G,

f~Glp, k),
where 1 : X — R is a mean function typically set to zero,
and x : X x X — R is a covariance kernel where a squared
exponential kernel is a common choice,

d 2
2 (@ik — jk)
k(z;,x;|0) = of exp (— Z 21%1>
k=1

with hyperparameters 0 = [03, 1, ..., l4].

Given a set of training samples, S = {(z;,y;)}}_, where
yi ~ f(x;)+N(0,02), the posterior distribution at x follows
a normal distribution with mean fi(x) and variance &2(x)
evaluated as in [23]. Note that a small set of exploration
points is needed to compute an initial posterior distribution
before the optimization process is started.

Given a distribution at point x, an acquisition function
captures how attractive that point is to sample next. We
used Expected Improvement (EI), which returns the expected
reduction in cost over the best parameters observed so far,

EI(z|S) = z5(x)®(2) + 7(z)p(2)

, _ min(S) — i(e) + ¢

()

where £ is a scaling parameter to adjust the tradeoff between
exploration-exploitation, ¢ is the Gaussian PDF, and ® is the
Gaussian CDF [28]. Using F1, the next point is chosen as
x* = arg max,, FI(z|S).

C. Metabolic Estimation

For each parameter set, the metabolic cost was continu-
ously estimated by using a first-order dynamical model [20]
for up to 45 breaths. We model the metabolic cost, m, as

— —t
me(co, ¢, 70, 7) = (1 — eTt) + cpe™ ,

where ¢ is the total measurement time and 7y, 7 are time
constants characterizing the rate of change for the initial cost
co and the instantaneous energetic cost c, respectively.

An Unscented Kalman Filter (UKF) was used to estimate
the parameters of our metabolic cost model using real-time
breath measurements [29]. Kalman filters are applied to
discrete time systems of the form

o(t+1) = F(o(t),v(t),t)
2(t) = H(o(t), w(t), 1),
where o(t) represents the unobserved state of the system,
z(t) the observed measurement, zero-mean Gaussian vectors
v(t) for process disturbances or modeling errors, and w(t)
for measurement noise.

As 19, T, c,co are assumed to be constant parameters, the
UKF formulation becomes

x=[eo ¢ 7]
F(o(t),v(t),t) = o(t) + v(t)
H(o(t), w(t),t) = my(o(t)) + w(t).
Upon subsequent breath measurements, the filter refines the
estimate of the metabolic cost function parameters.

D. Estimator Stopping Process: o-scaled Offset

The decision to continue to the next iteration of Bayesian
optimization is framed as a stopping problem using the
metabolic estimator’s state with the following parameters:

N Finite horizon

Xt State at time ¢

P(X¢|X¢—1) State transitions, typically Markovian

A Discount Factor € (0, 1]

r(X) Bounded reward function for continuing at state X

g(X) Bounded reward function for stopping at state X



The objective is to find time 7 that maximizes

+ZAZ

The value function can be computed via backward induc-
tion by defining

Viz) = max. E[Ng(X INXo = z].

In(z) = g(x)
In(2) = maz{g(x),r(x) + AEp(y|2) [Int1 ()]},
then V' (z) = Jo(x) and the optimal stopping time, 7, satisfies

[30]
min J;(X,) = g(X.).

Within the context of the metabolic estimator, let N be
the maximum measurements allowed at a parameter evalua-
tion, & ~ N (uwt,ogt) is the energetic cost estimate and
associated variance for the current evaluation, and Z* ~
N (pz+,02.) is the energetic cost estimate and variance for
the best parameter setting found thus far as defined by the
Gaussian process. As Bayesian optimization starts with an
exploration phase, £* will always be defined.

The o-scaled offset model directly embeds Z; and Z* into
the stopping problem. The best estimate of the difference in
energetic costs is given by the following Gaussian distribu-
tion

By — 3% ~ N(p,0%)
W= Py — Ha*
o? = Ufct + 0'920*.

The stopping problem state is then the estimate difference
with a non-Markovian transition model of independent draws
from the same Gaussian distribution. The lower x; seems
relative to x*, the higher the reward function incentivizes
continuing. In summary,

P(Xy|X¢—1) = P(Xy) ~ N (p, 0?)
r(z) =Ko —x
g(z) =0,

where K is a o-scaled offset to achieve some degree of
risk aversion to stopping too early. The optimal stopping
point for this formulation can be reduced to the first time
X, > Ko. As the cost variance decreases over subsequent
measurements, o2 decreases the offset accordingly.

Having an unfavorable K for scaling the o-scaled offset
can lead to under-sampling potentially favorable settings or
reducing to a fixed sampling of the maximum number of
measurements. However, since the Bayesian optimization
algorithm begins with an exploration phase, these data points
can be used to adjust K. A schedule of the trajectory of
thresholds is created as if the stopping problem were run
on the exploration phase and the most risk-averse settings
are used during the optimization. Let M and X be |E| x N
matrices providing traces where M;,¥;; correspond to
Ha s agj for exploration point ¢ and measurement j. For each
exploration point, the £* distribution can be the final distri-

Init |[E| x N Matrix X
Init N-Vector A
Define Window W
for i =1 to |E|
forj=1to N
p = M;; — My
=%+ Sin
Xij =&
end
end
cfori=1to N
12: A= MAX{X, 1 <r <|E,i—-W < ¢ <i+W}
13: end
14: Return A
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Algorithm 2: Determining threshold levels at every measurement
time based on subject’s exploration data. The hyperparameter W
specifies a window of time to choose the most risk averse threshold
over.
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Fig. 1: UKF metabolic estimator applied to two subject trials.
The top figure shows the raw measurements and the metabolic
cost prediction. The bottom plot displays the normalized covariance
associated with the estimate, beginning with a covariance of 1 and
converging at different rates depending upon the data.

bution, (M, 3;n), to estimate the magnitude of thresholds
when comparing similar cost estimates. Algorithm 2 outlines
the process of calculating the adaptive threshold vector A.

III. SIMULATION RESULTS

1) Metabolic Estimation: We evaluated the online esti-
mation method using subject data from a prior study. The
results from two representative subjects are shown in Fig. 1.
The accuracy of this estimator was tested in percentage error
by comparing the prediction values at certain time instants
(5 min, 2 min, 1.5 min, 20 breaths, and 30 breaths) to the
“ground truth,” which we take to be the average of the last
two minutes of the five minute data. The errors were 1%,
1%, 1%, 3%, and 6%, respectively.

2) Optimization using an Estimator Stopping Process:
Four standard functions (Table I) were tested using the early
estimator stopping process, compared to a fixed measure-



Function Domain Min m I
Hartmann-6 [0,1]¢ -3.322 | -0.259 | 0.383
Ackley [—32.768, 32.768]4 0 20.882 1.027
Levy [~10,10]* 0 42.544 | 27.939
Branin ([-5,10],[0,15]) | 0.398 | 54.452 | 51.129

TABLE I: Validation data set. Four different objective functions
are used for simulation validation.

ment interval. These functions exhibit different behavior: the
Hartmann-6 and Ackley functions have larger domain spaces
with lower standard deviations, generally making them more
difficult to enter local minima. While the Levy and Branin
functions have large regions of local minima, and in Branin’s
case three global minima, much higher noise is injected due
to the standard deviations of the respective functions.

A Gaussian state estimate, &, was initialized to (fi,5?) of
the respective function. At each timestep a measurement, 2,
was taken with Gaussian noise proportional to the standard
deviation of the function. The updated state estimate is the
product of Gaussian PDFs of the current state estimate,
I, with the measurement estimate, (z:,0,), where o, =
[‘1’—;, 52,1052]. Each function used the same exploration
phase of 6 points, a window for the adaptive thresholds
of 2, and the maximum number of timesteps was set to
45 measurements. The optimization methods then had 630
remaining measurements to find an optimal point, which
for the fixed measurement interval implies 14 iterations of
standard Bayesian Optimization.

For time ¢, let x; be the GP’s estimated minimum point.
Define

_ flze) = f(z")
SNICOENIEDS
where f is the true, noiseless function and f(z*) is the
function minimum. Fig. 2 plots y; averaged over 100 trials.
As the exploration phase is the same for each method, it is
omitted from the charts for brevity.

The early stopping mechanism allowed for greater explo-
ration of the domain space as evidenced by the smoother
trajectory over time as compared to more of a step ladder
trajectory with the fixed measurement interval. The scenario
where measurement noise is underestimated may lead to the
possibility where promising points are stopped too early,
while overestimating measurement noise may reduce the
algorithm to fixed measurements at the maximum number
of timesteps. However in our simulations, regardless of the
inaccuracy in the measurement noise the early stopping
method produced results closer to the optimum as compared
to the fixed measurement interval method (Fig. 2).

IV. HUMAN WALKING STUDIES WITH SOFT EXOSUITS

We conducted preliminary human walking experiments
using single- and multi-joint soft exosuits to test the pro-
posed algorithm. The Harvard Longwood Medical Area
Institutional Review Board approved the studies, and all
participants provided written informed consent.
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Fig. 2: Performance comparison between an estimator stopping
method (Adap) and a fixed measurement interval method (Fixed).
Four different objective functions with three different levels of
measurement variation were tested. The exploration phase is the
same between methods and is omitted for brevity.

A. Single-joint exosuit optimization

We optimized parameters for hip extension assistance us-
ing a soft exosuit, a textile based wearable device [31] with a
non-portable, tethered system consisting of two independent
actuators to deliver assistance through the hip extension load
path of both legs. Further details about the soft exosuit and
off-board system can be found in [7].

1) Controls overview: The electronics hardware has a
three-layer configuration for the control system architecture:
real-time target machine (top layer), microprocessor (middle
layer), and servomotor driver (bottom layer). In the top layer,
the real-time target machine (Speedgoat, Switzerland) runs a
Simulink model (MathWorks, Natick, MA, USA) in a host
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Fig. 3: (a) Single joint, Hip extension force profiles (6 parameters,
1: onset timing, 2: peak timing, 3: offset timing, 4: peak magnitude
of force, 5: rising force node, 6: falling force node) (b) Multi-joint,
Hip extension force profiles (2 parameters, 1: peak timing, 2: offset
timing) and ankle plantarflexion position profiles (2 parameters, 1:
onset timing, 2: peak timing) (c) Experimental setup

laptop. The Atmel 32-bit microprocessor (ATSAME70N21,
Atmel Corporation, CA, USA) in the middle layer acts as a
signal hub between the target machine and the servomotor
driver. In the bottom layer, Gold Twitter (Elmo Motion
Control Ltd, Israel) is selected as the current servomotor
driver. The CAN communication between layers closes the
control loop at a 1kHz loop rate [7].

The algorithm PC collects the subject’s metabolic data,
runs the optimization code, and sends the assistance profile
parameters that will be explored in the next condition to the
host laptop. Ethernet communication is used between a real-
time target machine, a host laptop, and the algorithm PC.

Further details can be found in [18].

2) Control parameter optimization: We used a six dimen-
sional parameter space (increased from two parameters used
in prior work [18]). We chose the following parameters to
optimize a force profile as a function of gait cycles which
consist of two cubic splines: the magnitude of peak force,
F,, three timings (onset t,,, peak t,, offset t,r¢), and two
node points (rising F). and falling Fy) at the middle of the
rising and falling duration as described in Fig. 3 (a). The
gait cycle (%GO ) was calculated using a maximum hip
flexion gait event [18].

Considering the hip extension moment and hardware lim-
itations, the following constraints were applied.

0NGCryar <ton < ty — 15%GCryaF
tp + 15%GCryar < topr < 55%GCrHF
50N < F, < 250N
F,x03<F. <F,x0.7
F,x03<Fy <F,x0.7.

3) Experimental protocol: Two healthy male adults with
prior experience of walking with the exosuit’s assistance
participated in this study (S1: 48 yrs, 85 kg, 178 cm; S2:
27 yrs, 74 kg, 177 cm). The study consisted of a single-
day experimental session involving an exosuit parameter
optimization process during treadmill walking at 1.25m/s.
The optimization process included two separate walking
bouts: a 20-min (approx.) bout initializing the algorithm with
an evenly distributed pseudo-random set of parameters and
a 40-min (approx.) bout to run actual Bayesian optimiza-
tion, making the entire optimization process less than 60
min including 3-min warm-up periods in the beginning of
each bout. The metabolic cost of walking 5-min with and
without the exosuit were then measured using (i) individually
optimized parameters (OPT) and (ii) fixed generic parameters
(FIX) from the literature (i.e. ESLP condition in [32]) for
comparison.

4) Result: The optimization procedure ran 37 iterations
with 17 early estimator stops (subject 1) and 27 iterations
with 8 early estimator stops (subject 2). Participants reduced
their metabolic cost by 35% (subject 1) and 7% (subject 2)
for the optimal condition (OPT) and 29% (subject 1) and -4%
(subject 2) for the fixed generic condition (FIX), compared to
no-exosuit condition. The optimized force profile is shown
in Fig. 4. The soft exosuit followed the desired trajectory
within 5% error relative to the peak force.

B. Multi-joint exosuit optimization

We further evaluated the performance of the algorithm by
optimizing parameters for both hip and ankle assistance using
a multi-joint soft exosuit [9]. An off-board actuation system
was used, similar to the one in the single-joint optimization
study but with two sets of 2-DOF actuators. Further details
about the textile architecture can be found in [9].

1) Controls overview: Similar to the single-joint opti-
mization study, a Simulink-based real-time control architec-
ture (Speedgoat) was used to regulate the exosuit assistance.
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Fig. 4: Hip extension force profiles of the two subjects: the
optimal parameters were (a) 2%, 24%, 40%, 223N, 0.6x223N,
and 0.45x223N (subject 1) and (b) 3%, 27%, 53%, 174N,
0.44x174N, and 0.54x 174N (subject 2), for onset, peak, offset
timings, peak force, rising node, and falling node, respectively.

For the hip assistance, we used a combination of piece-
wise sinusoidal force profiles as a function of gait cycles
(%GChrr) (Fig. 3 (b), top). For the ankle assistance, on
the other hand, the controller detected heel strike by using
the foot IMUs to define gait cycles (%G Cps). A force-based
position control was performed following a piece-wise linear
position profile as a function of %GCy s (Fig. 3 (b), bottom)
[9], [13].

2) Control parameter optimization: In this study, four
control parameters across different lower-limb joints (two for
the hip extension load path and the other two for the ankle
plantarflexion load path) were simultaneously optimized for
each individual using the proposed algorithm. For the hip
extension assistance, the peak (T)cqx in Fig. 3 (b)) and the
offset (15 se¢) timings of the force profile were optimized,
while the peak force magnitude was maintained at 40% of
the wearer’s body weight. Parameter constraints were defined
as follows:

15%GCrur < Tpear < 50NGCH HF
30%GCraF < Tofpset < 65%GCrEF
Toffset + 15%GCMHF < Tpeak~

For the ankle assistance, the cable retraction onset timing
(T1 in Fig. 3 (b)) and the completion timing (7%) were
optimized, while the cable release onset timing (73) was set
relative to T5. The target peak force magnitude was set to
60% of the wearer’s body weight. Parameter constraints were
defined as follows:

30%GCHs <T) <40%GCrs
50%GCHs < Ty < 60%GCrs
Ti +10%GCrs < Ty
T3 =Ty +10%GChs.

3) Experimental protocol: Two healthy male adults with
prior experience of walking with the exosuit assistance
participated in this study (S1: 48 yrs, 85 kg, 178 cm; S2:
23 yrs, 75 kg, 183 cm). The experimental procedure was
identical to the procedure in the single-joint optimization
study except for an additional comparison with a slack
(powered-off) condition. As for the fixed generic parameters
for comparison, averaged parameters from [18] were used
for the hip extension assistance, while averaged parameters
from [7] were used for the ankle assistance.

Optimized parameter value Metabolic
reduction
Sbj | Cond.| Hip Hip Ankle | Ankle| Ref: Ref:
peak offset | onset peak | Slack | No-
suit
] OPT 21.3 453 44.9 55.9 36% 39%
FIX 249 424 425 57.5 35% 38%
) OPT 26.4 414 50.0 60.0 36% 33%
FIX 249 424 425 57.5 36% 32%

TABLE II: Multi-joint optimization results

4) Result: The optimization ran 26 iterations within 50
minutes with 11 early estimator stops (subject 1) and 20
iterations within 32 minutes with 8 early estimator stops
(subject 2), excluding warm-up periods. A summary of the
metabolic reduction can be found in Table II.

V. CONCLUSION

In this work, we introduced an early stopping process
to address the limited time budget for human-in-the-loop
optimization. By coupling the metabolic cost estimation with
the optimization process, the optimization allowed up to
37 iterations in 50 minutes, which would have required 80
minutes using Bayesian optimization with fixed estimation
time budget [10], [18]. When the optimized parameters were
used, participants reduced their metabolic cost to below, or
approximately equal to, the generic condition. Our prelimi-
nary results lend support to the hypothesis that an estimator
stopping process can make more efficient use of experimen-
tal time compared to approaches that use fixed estimation
intervals while sampling, opening the door to explore richer
parameters spaces in human subject experiments.

We note that while our approach may support modest
increases to the parameter space dimensionality, performing
HIL optimization in high-dimensional (i.e. dozens or more)
spaces remains intractable in the absence of prior information
that could otherwise bias search in promising directions.
Also, while our results demonstrate significant reductions in
metabolic cost for both devices, our results are based on
N = 2 subjects and experimental protocol does not rule out
possible mitigating factors such as human adaptation over
the duration of the experiment. In future work, we aim to
collect a larger set of human subject data and add explicit
mechanisms that model the nonstationarity of metabolic cost
over time.
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