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Abstract Many critical robotics applications require robustness to disturbances aris-
ing from unplanned forces, state uncertainty, and model errors. Motion planning al-
gorithms that explicitly reason about robustness require a coupling of trajectory op-
timization and feedback design, where the system’s closed-loop response to distur-
bances is optimized. Due to the often-heavy computational demands of solving such
problems, the practical application of robust trajectory optimization in robotics has so
far been limited. Motivated by recent work on sums-of-squares verification methods
for nonlinear systems, we derive a scalable robust trajectory optimization algorithm
that optimizes approximate invariant funnels along the trajectory while planning. For
the case of ellipsoidal disturbance sets and LQR feedback controllers, the state and
input deviations along a nominal trajectory can be computed locally in closed form,
permitting fast evaluation of robust cost and constraint functions and their derivatives.
The resulting algorithm is a scalable extension of classical direct transcription that
demonstrably improves tracking performance over non-robust formulations while in-
curring only a modest increase in computational cost. We evaluate the algorithm in
several simulated robot control tasks.

1 Introduction

Motion planning is an active research area that has yielded several successes in recent
years, from sampling-based algorithms that scale to large state spaces [17, 19] to non-
linear optimization methods capable of handling complex dynamic constraints [41,
42, 2] and contacts [43, 39, 40]. Despite this, the world’s most advanced robots still
struggle to perform robustly when subjected to disturbances caused by unplanned
forces, state estimation errors, and model inaccuracies. Algorithms that explicitly
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reason about robustness require a coupling of motion planning and feedback design,
frequently resulting in computationally expensive algorithms that have limited prac-
tical utility in robotics.

Verification methods have been successfully used to compute regions of finite-
time invariance, or “funnels,” around trajectories, using sums-of-squares (SOS) opti-
mization [16, 44, 45]. In addition to providing performance certificates in the pres-
ence of disturbances [31], these methods can be used to build libraries of verified
motions to construct reactive policies that switch between and modify funnels based
on sensor feedback [26]. However, while these methods have been successfully used
for trajectory analysis, their naive application to trajectory optimization leads to ex-
pensive nonlinear optimization problems that do not scale well to complex robotic
systems with many degrees of freedom.

This paper builds on previous work on robust verification and trajectory optimiza-
tion to derive a scalable robust trajectory optimization algorithm that reasons about
disturbances by minimizing an analytical and differentiable cost function. The algo-
rithm is derived using the observation that, under time-varying linear feedback (e.g.,
LQR) and ellipsoidal disturbance sets, bounds on state and input deviations can be
computed locally along a trajectory in closed form. As a result, a tractable penalty
function over the set of all disturbances can be defined and constraints on the per-
turbed states and inputs can be enforced.

We incorporate this robust penalty function into a direct transcription method
(DIRTRAN), thereby inheriting many of the known benefits of these algorithms (e.g.,
easy handling of constraints and good numerical conditioning). The resulting algo-
rithm, called DIRTREL (DIRect TRanscription with Ellipsoidal disturbances and
Linear feedback), can be applied to the same class of systems as standard direct
transcription, while significantly improving tracking performance in the presence of
disturbances. In addition to demonstrating improved robustness on several simulated
robots, we elucidate the theoretical connection between DIRTREL and robust verifi-
cation methods based on sum-of-squares (SOS) optimization.

This paper is organized as follows: In Section 2 we summarize prior work related
to robust control and verification in robotics. We then review the direct transcription
algorithm and sum-of-squares programming in Section 3. The proposed robust direct
transcription algorithm is presented in Section 4. We then show that DIRTREL can be
viewed as an approximation of recently developed methods that solve SOS programs
to find invariant funnels in Section 5. Section 6 describes several simulation experi-
ments used to validate our new algorithm and analyze its computational performance.
Finally, we discuss conclusions and future work in Section 7.

2 Related Work

There is a rich literature on robust control of linear dynamical systems that has de-
veloped over the past four decades [50]. In particular, a set of techniques collectively
known as H∞ control allows designers to optimize performance in the presence of
disturbances by minimizing the L2 gain of the closed-loop system. H∞ techniques
have also been extended to nonlinear systems [22, 24]. In robotics, these methods
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have been used to improve trajectory tracking [49] and for optimization of limit cycle
behaviors in simple walking models [4], but scaling these methods to general robust
trajectory design has proved computationally challenging.

Several robust variants of differential dynamic programming [13] have been pro-
posed for solving worst-case minimax problems [33], risk-sensitive optimizations for
stochastic systems [8], and cooperative stochastic games [35]. Like the algorithm pro-
posed in this paper, these methods consider system responses under linear feedback,
but they use different robustness metrics and do not attempt to explicitly approximate
invariant regions along the trajectory. State and input constraints require additional
care, but could be handled approximately using penalty functions or exactly using
augmented Lagrangian or quadratic programming approaches [21, 37]. The algo-
rithm presented in this paper builds on direct formulations of trajectory optimization,
so it naturally handles nonlinear constraints on the nominal and disturbed state and
input trajectories.

Tube-based model-predictive control (MPC) algorithms [28] use online optimiza-
tion to drive the system back to a central path in the presence of additive disturbances.
However, for many systems, solving MPC problems in realtime remains challenging
in practice. Kothare et al. [18] developed a robust MPC algorithm for linear systems
based on online solution of semi-definite programs. Desaraju et al. [6] use online
adaptation of linear models and semi-explicit optimization techniques to ease com-
putational difficulties. Mordatch et al. [32] developed an ensemble trajectory opti-
mization method that aims to reduce the expected cost under uncertain model pa-
rameters while also minimizing sample trajectory variance under fixed PD control.
Ensemble methods have also been used in the context of linear-Gaussian control and
sampling-based planners for identifying plans with low collision probabilities [46].

Connections between contraction analysis and motion planning have been ex-
plored using divergence metrics. The divergence costs described in [14] are similar
in spirit to the robust cost function we propose, though they are based on sampling
rather than analytical bounds. Lou and Hauser [23] combined robust motion plan-
ning with model estimation to optimize robust motions involving contact changes.
However, their approach requires a kinematic plan to be given and only optimizes the
timing of the motion.

Several authors have developed risk-sensitive optimal control methods [12, 48]
for nonlinear stochastic systems with known models [8] or data-driven control learn-
ing approaches [47, 5, 20]. There has also been work on belief-space motion plan-
ning [38] in which uncertainty and information gathering were integrated as an ex-
plicit part of the planning objective.

Prior work has also augmented direct trajectory optimization methods with cost
functionals that weight the tracking performance of linear feedback controllers [3,
10]. However, there are several important differences from our approach. Griffin and
Grizzle [10], a fixed-gain proportional-integral controller is assumed, potentially cre-
ating limitations on closed-loop performance. Dai and Tedrake [3], the elements of
the time-varying cost-to-go matrix associated with an LQR tracking controller are
added as decision variables to the optimization problem, and disturbances are handled
through a sampling scheme that scales poorly with the dimensionality of the distur-
bance vector. These design choices substantially increase the size and complexity of
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the nonlinear program that must be solved, which limits the algorithm’s applicability
to higher-dimensional robot planning problems.

Verification approaches to feedback motion planning attempt to compute regions
of finite-time invariance, or “funnels,” [16, 45]. Moore et al. extended the LQR-Trees
framework to include uncertainty in funnel estimates using a Common Lyapunov
formulation of a sums-of-squares (SOS) program [31]. A related line of work led to
the development of robust adaptive tracking controllers with guaranteed finite-time
performance [30]. Majumdar and Tedrake extended these ideas to support robust on-
line planning using pre-planned funnel libraries to construct a policy that can adjust
funnels and tracking controllers based on sensor feedback [26]. The algorithm we
describe is strongly connected to SOS verification approaches, but it aims to design
robust trajectories, not just verify or switch between pre-computed trajectories. Naive
integration of SOS constraints into trajectory optimization would result in intractably
hard problems for most robots of interest. The key contribution of the proposed
framework is that it reformulates this robust trajectory design as a direct transcrip-
tion problem with additional cost and constraint functions that can be computed in
closed form.

3 Background

The algorithm we propose builds upon direct trajectory optimization methods, with
strong theoretical connections to modern verification algorithms for nonlinear dy-
namical systems. Below we provide a brief overview of these ideas to lay the ground-
work for our subsequent development.

3.1 Direct Transcription

Direct transcription (DIRTRAN) methods solve optimal control problems by explic-
itly parameterizing the state and input trajectories and formulating a large, sparse non-
linear program [1]. Compared to shooting methods, these algorithms enable straight-
forward inclusion of state constraints and avoid numerical pitfalls such as the “tail
wagging the dog” effect, at the expense of a larger problem size. The resulting non-
linear optimization problems can be solved using commercial sequential-quadratic
programming (SQP) packages, such as SNOPT [9], that exploit the sparsity patterns
in the linearized constraint matrix.

Given a nonlinear dynamical system, ẋ = f(x, u), we discretize the system’s
state and input trajectories in time using N knot points, x1:N = {x1, . . . , xN} and
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u1:N−1 = {u1, . . . , uN−1}, and solve the following NLP,

minimize
x1:N , u1:N−1, h

gN (xN ) +

N−1∑
i=1

g(xi, ui)

subject to xi+1 = xi + f(xi, ui) · h ∀i = 1 : N − 1

ui ∈ U ∀i = 1 : N − 1

xi ∈ X ∀i = 1 : N

hmin ≤ h ≤ hmax

(1)

where g(·, ·) and gN (·) are cost functions, X is a set of feasible states, U is a set
of feasible inputs, and h is the time step used for integration. For simplicity, we
have assumed a forward Euler integration scheme, although other schemes such as
backward Euler or midpoint interpolation can be used instead. By including h as a
decision variable, we allow the solver to scale the duration of the trajectory. In what
follows, we write the discrete-time dynamics as an iterated map, xi+1 = fh(xi, ui),
for conciseness.

3.2 Invariant Funnels

The output of DIRTRAN is a feasible trajectory that locally minimizes cost. Given
this trajectory, it is standard practice to design a local feedback controller to track the
planned motion using techniques such as LQR. It is then natural to ask, “what stabil-
ity guarantees can be made about the resulting closed-loop system?” To answer this
question, it is often useful to compute an invariant funnel (also referred to as a “region
of finite-time invariance”). Funnels are tube-like regions around a nominal trajectory
within which all closed-loop trajectories of a system are guaranteed to remain if they
begin inside (Figure 1) [16, 45]. This idea can be naturally extended to robust funnels
that guarantee invariance in the presence of bounded disturbances [25].

x0(t)

{x(t) | V (t, x)  0}

Fig. 1 Conceptual depiction of an invariant funnel around a nominal trajectory.

An invariant funnel can be represented mathematically as the sublevel set of a
scalar function,

{x(t) | V (t, x) ≤ 0}. (2)
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To guarantee that trajectories remain inside the funnel, the condition

V̇ (t, x, w) =
∂V

∂t
+∇V · fcl(x,w) ≤ 0, (3)

where ẋ = fcl(x,w) is the closed-loop system dynamics, must be satisfied on the
boundary of the funnel (where V (t, x) = 0) for all disturbances w ∈ W . We will
also assume the disturbance set W can be represented as a sublevel set of a scalar
function:

W = {w | S(w) ≤ 0}. (4)

Combining these ideas, a sufficient condition for a robust funnel is

−V̇ (t, x, w) + L(t, x)V (t, x) +N(t, w)S(w) ≥ 0,

N(t, w) ≥ 0,
(5)

where L(t, x) and N(t, w), known as multiplier functions, play a role similar to La-
grange multipliers. The intuition behind (5) is that V and S are negative inside the
funnel, making the condition more difficult to satisfy. Outside the funnel, where −V̇
may be negative, V and S are positive, allowing the first inequality in (5) to be satis-
fied. N(w) must be strictly positive to guarantee that −V̇ ≥ 0 holds for all w ∈ W ,
while L(x) can be positive or negative since V̇ only needs to be negative on the
boundary of the funnel (when V (t, x) = 0), and not necessarily in the interior of the
funnel.

3.3 Sum-of-Squares Programming

Finding a function V (t, x) that satisfies (5) is difficult in general. However, opti-
mization algorithms have recently emerged that can search for polynomial V func-
tions [36, 45]. Assuming all functions are polynomials, (5) can be converted into a
numerical optimization problem by defining a vector z containing all monomials up
to a given degree. The functions V , V̇ , S, L, and N can then be represented by sym-
metric matrices. For example, the polynomial a2 + b2 − 2ab + 2a − 2b + 1 can be
written as zTCz, where

z =

ab
1

 , (6)

C =

 1 −1 1
−1 1 −1
1 −1 1

 . (7)

If the matrix C is positive semidefinite, the corresponding polynomial can be
written as a sum of squares (SOS), and therefore must be globally non-negative [36].
Rewriting (5) in matrix form, the problem of finding a robust invariant funnel can be
posed as the following optimization problem,

minimize Vol({x(t) | V (t, x) ≤ 0})
subject to C � 0,

(8)
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which is a semidefinite program (SDP). Since our goal is robustness to disturbances,
we minimize the volume of the funnel to find the tightest bound on the disturbed state
trajectories around the nominal trajectory.

While SDPs like (8) can be solved reliably in theory, the number of decision
variables grows combinatorially in the dimensions of both the state and disturbance
vectors, as well as the order of the polynomials [36]. As a result, only very simple
low-dimensional systems can be handled in practice. Our goal is to reduce this com-
putational burden so that robust invariant funnels can be used not only for analysis
of closed-loop trajectories, but also inside the inner loop of trajectory optimization
algorithms for complex high-dimensional robotic systems.

4 Direct Transcription with Ellipsoidal Disturbances

The following subsections describe how we extend the standard DIRTRAN problem
to incorporate linear feedback, bounded disturbances, and a cost function that penal-
izes closed-loop deviations from the nominal trajectory.

4.1 State and Input Deviations

First, we assume disturbances, wi ∈ W , can enter into the dynamics in a general
nonlinear way:

xi+1 = fh(xi, ui, wi). (9)

Under this definition, wi could, for example, correspond to model parameter un-
certainty, unplanned external forces, or state estimation errors. A trajectory, x1:N ,
u1:N−1, that satisfies

xi+1 = fh(xi, ui, 0) (10)

is referred to as a nominal trajectory. Given a disturbance sequence, w1:N−1, the
deviations from the nominal state trajectory are calculated as

δxi+1 = fh(xi + δxi, ui + δui, wi)− xi+1, (11)

and we assume that deviations from the nominal input sequence are computed using
a linear feedback controller,

δui = −Kiδxi. (12)

Any linear controller can be used, but in the development that follows we define
Ki to be the optimal time-varying linear quadratic regulator (TVLQR) gain matrix
computed by linearizing the dynamics along the nominal trajectory and solving the
dynamic Riccati equation,

Ki = (R+BTi Pi+1Bi)
−1(BTi Pi+1Ai)

Pi = Q+KT
i RKi + (Ai −BiKi)

TPi+1(Ai −BiKi) ,
(13)

where Ai = ∂fh/∂x|xi,ui,0, Bi = ∂fh/∂u|xi,ui,0, PN ≡ QN , and Q,QN � 0 and
R � 0 are state and input cost matrices.
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4.2 Robust Cost Function

To optimize robustness, our approach augments the NLP (1) with an additional cost
term, `W(x1:N , u1:N−1). Intuitively, we want this function to penalize deviations of
the closed-loop system from the nominal trajectory in the presence of disturbances,
wi, drawn from the setW . To penalize these deviations, we assume a quadratic one-
step cost, δxTi Q

`δxi+δu
T
i R

`δui, whereQ` � 0 andR` � 0 are positive semidefinite
cost matrices.

In order to compute δx1:N and δu1:N−1, we need a well-defined disturbance se-
quence,w1:N−1. Instead of resorting to sampling or worst-case minimax optimization
methods, we instead approximate the robust cost averaged over the entire disturbance
set and summed along the trajectory:

`W(x1:N , u1:N−1) ≈
1

Vol(W)

∫
W

(
δxTNQ

`
NδxN +

N−1∑
i=1

(
δxTi Q

`δxi + δuTi R
`δui

))
dW. (14)

For general nonlinear systems and disturbance sets, the integral in equation (14) can-
not be easily computed. However, the assumption of an ellipsoidal disturbance set
and a linearization of the dynamics about the nominal trajectory leads to a compu-
tationally tractable approximation. While linearization of the dynamics may seem
limiting, we argue that the resulting local approximation has roughly the same region
of validity as the LQR tracking controller. It therefore does not impose significant
practical limitations beyond those already associated with the use of linear feedback.

We parameterize the ellipsoidal setW by a symmetric positive-definite matrixD,
such that

wTD−1w ≤ 1. (15)

Note that the set of vectors describing the semi-axes ofW are given by the columns
of the principal square root of D, defined such that D = D1/2D1/2, where D1/2 is
also symmetric and positive definite. Using the fact that ellipsoids map to ellipsoids
under linear transformations, approximate ellipsoidal bounds on the state deviations,
δxi, can be computed at each time step i. As in equation (15), we parameterize these
ellipsoids by matrices Ei � 0:

δxTi E
−1
i δxi ≤ 1. (16)

Assuming a bound on the initial state deviation parameterized byE1, the matrices
Ei can be found at all future time steps using the system dynamics. Linearizing equa-
tion (11) about the nominal trajectory gives a set of linear time-varying equations of
the form,

δxi+1 ≈ Aiδxi +Biδui +Giw , (17)

where

Gi =
∂fh
∂w

∣∣∣∣
xi,ui,0

. (18)
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Interpreting the columns of E1/2
i as instantiations of δx1,

E
1/2
i =

[
δx1i δx

2
i · · · δxni

]
, (19)

equation (17) can be applied to each column individually to derive a a recursion for
Ei+1 in terms of Ei and D:

Ei+1 =
[
δx1i+1 · · · δxni+1

] [
· · ·
]T

=
[
(Ai −BiKi)δx

1
i +Giwi · · · (Ai −BiKi)δx

n
i +Giwi

] [
· · ·
]T

= (Ai −BiKi)Ei(Ai −BiKi)
T +GiDG

T
i

+ (Ai −BiKi)HiG
T
i +GiH

T
i (Ai −BiKi)

T ,

(20)

where Hi has been defined to account for δxiwi cross terms. Equation (20) can be
written compactly as,

Mi+1 = FiMiF
T
i , (21)

where Mi and Fi are defined as follows,

Mi =

[
Ei Hi

HT
i D

]
(22)

Fi =

[
(Ai −BiKi) Gi

0 I

]
, (23)

and M1 is initialized with H1 = 0 and E1 � 0.
For completeness, we also mention that a continuous-time version of (21) can be

derived. Assuming continuous-time dynamics,

δẋ(t) ≈ Ac(t)δx+Bc(t)δu+Gc(t)w , (24)

we have,
Ṁ(t) = Fc(t)M +MFc(t)

T , (25)

where M is defined as before, but the continuous-time Fc(t) is,

Fc(t) =

[
(Ac(t)−Bc(t)Kc(t)) Gc(t)

0 0

]
, (26)

and Kc(t) is obtained by solving the continuous-time differential Riccati equation
in-lieu of (13).

The propagation of Ei forward in time through the linearized dynamics bears
some resemblance to the covariance propagation step in a Kalman Filter. However,
there are some important differences. First, as a matter of interpretation, equation
(21) is purely deterministic; Ei represents a strict bound rather than a statistical co-
variance. Second, equations (21)–(23) contain additional cross terms, signified by the
presence of theHi blocks in the matrixMi, which are absent in the Kalman Filter due
to the assumed statistical independence of noise at different time steps (the “Markov
property”).



10 Zachary Manchester, Scott Kuindersma

Returning to the cost function `W(x1:N , u1:N−1), we replace the volume inte-
gral over the disturbance set in equation (14) with a sample mean calculated over the
columns of E1/2

i , which correspond to the semi-axis vectors of the ellipsoids bound-
ing the state,

`W(x1:N , u1:N−1) =

1

nx

∑
δxN∈col(E1/2

N )

δxTNQ
`
NδxN +

1

nx

N−1∑
i=1

∑
δxi∈col(E1/2

i )

δxTi Q
`δxi + δuTi R

`δui ,

(27)

where nx is the state dimension. In the remainder of the paper we omit this constant
factor, as it has no effect on the results and can be folded into the cost-weighting
matrices.

The sum over the columns of E1/2
i can be computed by rewriting the quadratic

forms in equation (14) using the trace operator,

δxTi Qδxi = Tr(Qδxiδx
T
i ) (28)

δuTi Rδui = Tr(Rδuiδu
T
i ), (29)

and replacing the outer products δxiδxTi and δuiδuTi with suitable expressions in-
volving Ei:

`W(x1:N , u1:N−1) = Tr (QNEN ) +

N−1∑
i=1

Tr
(
(Q+KT

i RKi)Ei
)
. (30)

Equations (21)–(23) and (30) provide an easily computable and differentiable cost
function that quantifies the system’s closed-loop sensitivity to disturbances. The eval-
uation of `W is summarized in Algorithm 1.

4.3 The DIRTREL Algorithm

We now develop a complete algorithm that outputs a feasible trajectory and feed-
back controller for the nominal (w = 0) system such that the sensitivity of the
closed-loop system to disturbances is minimized. In addition to augmenting (1) with
`W(x1:N , u1:N−1), we must also ensure that the closed-loop system obeys state and
input constraints. To do so, we again use the columns of E1/2

i , which give extreme
values of δxi on the boundary of the ellipsoid.

In particular, all state constraints on the nominal trajectory are also applied to the
set of disturbed state vectors,

xWi = xi ± col
(
E

1/2
i

)
, (31)

and all input constraints are also applied to the set of disturbed closed-loop inputs,

uWi = ui ± col
(
(KiEiK

T
i )

1/2
)
. (32)
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Algorithm 1 Robust Cost Function
1: function `W (x1:N , u1:N−1, D,E1, Q`, R`, Q`

N , Q,R)
2: for i = 1 . . . N − 1 do
3: Ai ← ∂x=xi fh(x, u, w)
4: Bi ← ∂u=ui fh(x, u, w)
5: Gi ← ∂w=0 fh(x, u, w)
6: end for
7: K1:N−1 ← TV LQR(A1:N−1, B1:N−1, Q,R)
8: H1 ← 0
9: for i = 1 . . . N − 1 do

10: `← `+Tr
(
(Q` +KT

i R
`Ki)Ei

)
11: Ei+1 ← (Ai −BiKi)Ei(Ai −BiKi)

T

+(Ai −BiKi)HiG
T
i

+GiH
T (Ai −BiKi)

T

+GiDG
T
i

12: Hi+1 = (Ai −BiKi)Hi +GiD
13: end for
14: `← `+Tr

(
Q`

NEN

)
15: return `
16: end function

While not strictly equivalent to checking the entire boundary of the ellipsoid, enforc-
ing constraints on the set of vectors xWi and uWi is much simpler computationally.
The resulting optimization problem, referred to as DIRTREL, can be expressed as the
following NLP:

minimize
x1:N , u1:N−1, h

`W(x1:N , u1:N−1) + gN (xN ) +

N−1∑
i=1

g(xi, ui)

subject to xi+1 = fh(xi, ui) ∀i = 1 : N − 1

ui ∈ U ∀i = 1 : N − 1

uWi ∈ U ∀i = 1 : N − 1

xi ∈ X ∀i = 1 : N

xWi ∈ X ∀i = 1 : N

hmin ≤ h ≤ hmax

(33)

Unlike minimax approaches to robust control, `W(x1:N , u1:N−1) and the associated
robust state and input constraints in (33) are smooth functions of the state and input
trajectories. As a result, they can be differentiated in closed form and good con-
vergence behavior can be achieved with standard NLP solvers based on Newton’s
method [34].

Since DIRTREL builds on the classic DIRTRAN algorithm, it inherits some of
that algorithm’s favorable computational properties [1]. Like DIRTRAN, the Jaco-
bian matrices of the dynamics, state, and input constraints in (33) remain banded
and sparse. The number of decision variables also remains the same as standard
DIRTRAN. Unlike DIRTRAN, however, the Jacobians of the disturbed state and in-
put constraints, as well as the Hessian of the robust cost function, are dense. It is pos-
sible to build a version of DIRTREL with sparse Jacobians and Hessians by making
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the Ki and Mi matrices decision variables and adding corresponding equality con-
straints to enforce their dynamics. However, this would lead to a dramatic increase in
the problem size. In practice, we solve (33) with a quasi-Newton method that builds
a low-rank approximation of the Hessian from gradient vectors [9], mitigating some
of the computational burden associated with these dense matrices.

A key computational difference between DIRTREL and the classic DIRTRAN al-
gorithm lies in the differentiation of the system dynamics (9). To evaluate constraint
Jacobians, implementations of DIRTRAN typically require first derivatives of the dy-
namics. In contrast, DIRTREL requires second derivatives of the dynamics to evalu-
ate the Jacobians of the disturbed state and input constraints in (33) and to compute
the gradient of the robust cost function described in Algorithm 1.

5 Connections to Sum-of-Squares Methods

At a high level, the ellipsoidal bounds around state and input trajectories computed by
DIRTREL appear to have some similarities to the invariant funnels computed by SOS
methods [45, 26]. This section explores these connections at a deeper level and shows
that, in fact, these bounds are computationally tractable approximations of invariant
funnels.

We now explicitly instantiate the polynomial equations defining a robust invariant
funnel presented in Section 3.2. The ellipsoidal bounds of equations (15) and (16)
give the following polynomial inequalities for the disturbance and state sets:

S(w) = wTD−1w − 1 ≤ 0 (34)

V (t, δx) = δxTE(t)−1δx− 1 ≤ 0. (35)

Using the linearized dynamics of equation (24), V̇ can also be written explicitly as
follows:

V̇ (t, δx, w) = δxTE−1Gcw + wTGTc E
−1δx+

δxT
(
Ė−1 + E−1(Ac −BcKc) + (Ac −BcKc)

TE−1
)
δx. (36)

Putting (34)–(36) together, we can expand the inequality (5). We note that, since
we are dealing only with quadratic functions, the result reduces to a standard linear
matrix inequality (LMI), and the multiplier polynomials L(δx) and N(w) reduce to
scalars ` and n:

δxT
(
−Ė−1 − (Ac −BcKc)

TE−1 − E−1(Ac −BcKc)
)
δx

− δxTE−1Gcw − wTGTc E−1δx
+ `(δxTE−1δx− 1) + n(wTD−1w − 1) ≥ 0. (37)

To simplify the SOS program (8), we assume that we are given an initial value
E(0) at t = 0. Our goal is to propagate E(t) forward in time while ensuring that it is
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a tight bound. Therefore, we solve the following optimization problem at each instant
in time,

minimize
Ė,`,n

Tr(Ė)

subject to −V̇ + `V + nS ≥ 0

n ≥ 0,

(38)

where the first inequality constraint is (37).
Using the trace operator and the identity,

d

dt

(
E−1

)
= −E−1ĖE−1, (39)

we can rewrite −V̇ + `V + nS ≥ 0 as follows:

Tr
[
E−1ĖE−1δxδxT − (Ac −BcKc)

TE−1δxδxT

− δxδxTE−1(Ac −BcKc)− E−1GcwδxT

− δxwTGTc E−1 + `E−1δxδxT + nD−1wwT − `− n
]
≥ 0. (40)

Realizing that on the boundary of an ellipsoid,

xTA−1x = 1 =⇒ A =

n∑
k=1

xkx
T
k , (41)

for a set of n orthogonal vectors xk corresponding to the semi-axes of the ellipsoid,
we use the linearity of the expression (40) to replace each outer product with its
corresponding matrix (δxδxT → E, wwT → D, and δxwT → H) and multiply
through by E to arrive at:

Tr
[
Ė − E(Ac − BcKc)

T − (Ac − BcKc)E − GcH
T − HGTc

]
≥ 0. (42)

The minimization of Tr(Ė) in the objective of (38) causes (42) to hold with equal-
ity. Also, for a symmetric positive-semidefinite matrix, Tr(A) = 0 =⇒ A = 0,
allowing us to recover the following matrix ODE:

Ė = E(Ac − BcKc)
T + (Ac − BcKc)E + GcH

T + HGTc . (43)

Equation (43) is precisely the continuous-time propagation rule for the ellipsoidal
state bounds derived in Section 4. Therefore, these bounds can be interpreted as ap-
proximate robust invariant funnels computed with linearized system dynamics. Com-
pared to the original SOS formulation, the approximation used in DIRTREL scales
much more favorably with the size of the system’s state and input vectors, making it
particularly amenable to use inside the “inner loop” of other algorithms like trajectory
optimizers.
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6 Examples

We now present several examples to demonstrate the performance of DIRTREL.
Comparisons are made to the standard approach of performing trajectory optimiza-
tion with DIRTRAN followed by synthesis of a time-varying LQR tracking controller.
All algorithms are implemented in MATLAB, and the SQP solver SNOPT [9] is used
to solve the resulting NLPs. DIRTREL’s running time on all examples is between two
and four times that of standard DIRTRAN. Empirically, the increased running time is
primarily attributed to the calculation of derivatives of the robust cost function (cur-
rently done in MATLAB). We anticipate substantial gains could be achieved with a
more careful C++ implementation.

6.1 Pendulum with Uncertain Mass

In the first test case, a simple pendulum of unit length with an input torque is con-
sidered. The mass of the pendulum is bounded between 0.8 and 1.2, and the actuator
has torque limits−3 ≤ u ≤ 3. The goal is to swing the pendulum from its downward
stable equilibrium at θ = 0 to the upward unstable equilibrium at θ = π in minimum
time.

The following cost-weighting matrices are used in both the robust cost function
`W and the LQR tracking controller:

R = R` = 0.1

Q = Q` =

[
10 0
0 1

]
QN = Q`N =

[
100 0
0 100

]
.

The matrixD corresponding to the±0.2 bound on the pendulum mass isD = (0.2)2,
and the algorithm is initialized with no initial disturbance on the state, E1 = 02×2.

Figure 2 plots the approximate robust invariant funnel computed by DIRTREL
in blue. In addition, the results of 25 full nonlinear simulations performed with mass
values uniformly sampled over the range 0.8–1.2 are plotted in red, indicating the
shape of the “true” funnel. Good agreement can be seen between the red sample
trajectories and the blue funnel, indicating that the approximations made in DIRTREL
are reasonable.

The state and input trajectories produced by DIRTRAN and DIRTREL are shown
in Figure 3. Consistent with the minimum-time nature of the problem, DIRTRAN
generates a bang-bang control policy that uses the maximum torque that the actuator
is capable of producing. DIRTREL, on the other hand, produces a nominal trajec-
tory that stays clear of the torque limits. Over several numerical simulations, the
DIRTREL controller was able to perform successful swing-ups (in all trials) of pen-
dulums with mass values up tom ≈ 1.3, while the DIRTRAN controller was success-
ful only up to m ≈ 1.1. While tuning the cost function used in DIRTRAN through
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Fig. 2 Approximate robust invariant funnel computed by DIRTREL (blue) and 25 trajectories computed
with uniformly sampled disturbances (red).

trial and error could likely result in more robust tracking performance, DIRTREL al-
lows known bounds on the plant model to be incorporated in a principled and straight-
forward manner that eliminates the need for such “hand tuning.”

6.2 Cart Pole with Unmodeled Friction

Motivated by the fact that friction is often difficult to model accurately in mechanical
systems, we considered a swing-up problem for the cart pole system (Figure 4) with
unmodeled friction. The system’s state vector x ∈ R4 consists of the cart’s position,
the pendulum angle, and their corresponding first derivatives. The input u ∈ R con-
sists of a force applied to the cart. Nonlinear Coulomb friction is applied between
the cart and the ground. Once again, the goal is to swing the pendulum from the
downward θ = 0 position to the upward θ = π position.

In our simulations, the cart mass is taken to be mc = 1, the pendulum mass
is mp = 0.2, and the pendulum length is l = 0.5. The cart’s actuator is limited
to −10 ≤ u ≤ 10. The nominal model used during trajectory optimization has no
friction, while in simulation the following friction force is applied to the cart,

Fc = − sign(ẋ)µFN , (44)

where µ is a friction coefficient and FN is the normal force exerted between the cart
and the ground.

To account for unmodeled friction in DIRTREL, we make w an exogenous force
input to the cart and bound it such that −2 ≤ w ≤ 2, corresponding to D = 4. We
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Fig. 3 Pendulum swing-up state and input trajectories
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Fig. 4 The Cart Pole system with unmodeled friction with the ground.

use the following running cost in both DIRTRAN and DIRTREL:

g(xi, ui) = xTi xi + 0.1u2i ,

and a terminal constraint is enforced on the final state, xN = [0 π 0 0]T . The fol-
lowing cost-weighting matrices are used in both the robust cost function `W and the
LQR tracking controller:

R = R` = 1

Q = Q` =

[
10I2×2 0

0 I2×2

]
QN = Q`N = 100I4×4.
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Figure 5 shows the nominal trajectories generated by DIRTRAN and DIRTREL.
As in the pendulum example, the DIRTREL trajectory avoids saturating the actuator
while taking longer to complete the swing up. In this case, however, the two trajecto-
ries are qualitatively different; the DIRTREL trajectory takes one additional swing to
reach the vertical position.

0 1 2 3 4 5
−0.5

0

0.5

1

x

0 1 2 3 4 5
−2

0

2

4

θ DIRTREL
DIRTRAN

0 1 2 3 4 5
−10

−5

0

5

10

Time (s)

u

Fig. 5 Cart pole swing-up state and input trajectories

Numerous simulations were performed while varying the friction coefficient µ
to characterize the robustness of the closed-loop systems. Successful swing up was
observed using the DIRTRAN trajectory with LQR tracking in all trials over the range
0 ≤ µ ≤ 0.064, while the DIRTREL trajectory with LQR tracking was successful
only over the range 0 ≤ µ ≤ 0.295.

6.3 Quadrotor with Wind Gusts

Next, we demonstrate DIRTREL on a quadrotor subjected to random wind gusts.
The goal is for the aircraft to move from an initial position to a final position while
navigating an obstacle field. The dynamics are described using the model of [29] and
wind gusts are simulated by applying band-limited white noise accelerations to the
system.
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In both DIRTRAN and DIRTREL, constraints on the initial and terminal states of
the quadrotor were applied, and a quadratic running cost of the following form was
used:

g(xi, ui) = xTi Qxi + uTi Rui . (45)

The same weighting matrices were used in the running cost, the robust cost `W , and
the LQR tracking controllers:

R = R` = 0.1 I4×4

Q = Q` =

[
10 I6×6 0

0 I6×6

]
QN = Q`N =

[
10 I6×6 0

0 I6×6

]
Two different trajectories were computed with DIRTREL. In the first (DIRTREL-

1), disturbances were bounded by ±0.2 in the x and y axes and ±0.05 in the z axis,
corresponding to the following D matrix:

D =

.22 0 0
0 .22 0
0 0 .052

 .
In the second trajectory (DIRTREL-2), the disturbance bounds were set to ±0.4 in
the x and y axes, corresponding to,

D =

.42 0 0
0 .42 0
0 0 .052

 .

Fig. 6 DIRTRAN (red), DIRTREL-1 (blue), and DIRTREL-2 (green) quadrotor trajectories.
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Figure 6 shows the nominal trajectories generated by DIRTRAN and DIRTREL.
The DIRTRAN trajectory takes the shortest path to the goal state. However, it passes
quite close to several obstacles. The DIRTREL trajectories, on the other hand, take
longer paths to the goal but maintain greater distances from each obstacle.

We performed closed-loop simulations with random wind gusts of varying am-
plitudes. Disturbance inputs were generated by low-pass filtering white noise, then
rescaling the resulting disturbance trajectory so that its maximum amplitude was
equal to the desired value. Gust amplitudes in the x and y directions were varied
from 0.1 to 0.5, while amplitudes in the z direction were held fixed at 0.05.

Table 1 Number of closed-loop quadrotor trajectories with obstacle collisions out of 100 trials.

Max Gust DIRTRAN DIRTRAN (Infl. Obs.) DIRTREL-1 DIRTREL-2
0.1 37 0 0 0
0.2 65 1 0 0
0.3 77 4 3 0
0.4 82 21 5 0
0.5 90 27 9 1

Table 1 shows the results of 100 trials performed at each amplitude level. As
expected, no collisions occurred using the DIRTREL controllers for gust amplitudes
within the bounds imposed during planning (0.2 and 0.4 for for the first and second
cases, respectively) result in no collisions, while the DIRTRAN controller was unable
to avoid collisions with obstacles in many trials at every amplitude level.

To offer a more generous comparison, we calculated the closest distance between
the quadrotor and an obstacle in the nominal DIRTREL-2 trajectory, inflated the ob-
stacles by that distance, and re-planned a new trajectory with DIRTRAN. Obstacle
inflation (also called constraint shrinking) techniques are a heuristic approach to im-
prove robustness using traditional planning methods. The corresponding closed-loop
simulation results are shown in the second column of Table 1. Due to its ability to ex-
plicitly reason about the closed-loop dynamics and how disturbances act on particular
states, DIRTREL offers significantly better robustness than naive obstacle inflation.

6.4 Robot Arm with Fluid-Filled Container

Finally, we use DIRTREL to plan the motion of a robot arm carrying a fluid-filled
container. The goal is to gently place the container on a shelf while avoiding colli-
sions. A dynamics model of the seven-link Kuka IIWA arm was used, and bounds
of ±3 Newtons in the x and y directions and ±10 Newtons in the z direction were
placed on disturbance forces applied to the end effector in DIRTREL to account for
both uncertain mass and un-modeled fluid-slosh dynamics inside the container.

In both algorithms, constraints were placed on the initial and final poses of the
arm. The same quadratic running cost penalizing joint torque and quadratic termi-
nal cost penalizing the final velocity of the end effector were also applied in both
algorithms. The terminal cost was intended to encourage a gentle placement of the
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container on the shelf. The following weighting matrices were used in both the robust
cost function and LQR tracking controllers:

R = R` = 0.01 I7×7

Q = Q` =

[
100 I7×7 0

0 10 I7×7

]
QN = Q`N =

[
500 I7×7 0

0 50 I7×7

]
.

The nominal trajectories produced by DIRTRAN and DIRTREL are depicted in
Figure 7. As expected, the DIRTREL trajectory takes a wider path around the ob-
stacle. However, as in the quadrotor example, this kinematic behavior can also be
reproduced with DIRTRAN by inflating the obstacle.

Fig. 7 Nominal end-effector trajectories produced by DIRTRAN (red) and DIRTREL (blue).

To compare dynamic performance, we compute the RMS deviations of the closed-
loop system from the nominal trajectory with each controller. Ten trials were per-
formed while varying the mass of the container and applying band-limited white
noise disturbance forces to the end effector to simulate fluid slosh. DIRTRAN achieved
an RMS state deviation of 0.1192 and an RMS input deviation of 4.478, while DIRTREL
achieved an RMS state deviation of 0.0735 and an RMS input deviation of 4.422. The
DIRTREL controller achieved nearly 40% better closed-loop tracking performance
while using roughly the same control effort as the DIRTRAN controller.

7 Discussion

We have presented a new algorithm, DIRTREL, for robust feedback motion plan-
ning using approximate invariant funnels along the trajectory. The algorithm outputs
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trajectories and closed-loop tracking controllers that outperform the standard combi-
nation of direct trajectory optimization followed by TVLQR synthesis. In addition to
finding trajectories that locally minimize funnel volume through a closed-form cost
function, DIRTREL easily handles constraints on both the nominal and disturbed
system trajectories. Our simulation tests suggest that the approximations made in the
algorithm are reasonable, and that robustness to nonlinear disturbances and model
errors can be significantly improved for practical robotic systems.

Several interesting directions remain for future work. While we have focused on
direct transcription methods in this paper due to their ease of implementation, it is
also possible to derive similar robust versions of both collocation [11] and pseu-
dospectral methods [7]. DIRTREL assumes that the system dynamics are linear near
the nominal trajectory. While this approximation breaks down for large disturbances
and highly nonlinear systems, we argue that it is consistent with the approximations
inherent in the use of linear tracking controllers. However, this may not hold for large
disturbances, and it would be interesting to more fully compare the approximate fun-
nels computed by DIRTREL with nonlinear funnels computed using SOS techniques.
It may also be possible to extend the DIRTREL algorithm to account for some non-
linearity by incorporating deterministic sampling ideas from the unscented Kalman
filter [15, 27].
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