A Constrained Kalman Filter for Rigid Body
Systems with Frictional Contact

Patrick Varin and Scott Kuindersma

Harvard University, Cambridge MA 02138, USA,
varin@Qg.harvard.edu, scottk@seas.harvard.edu

Abstract. Contact interactions are central to robot manipulation and
locomotion behaviors. State estimation techniques that explicitly cap-
ture the dynamics of contact offer the potential to reduce estimation
errors from unplanned contact events and improve closed-loop control
performance. This is particularly true in highly dynamic situations where
common simplifications like no-slip or quasi-static sliding are violated.
Incorporating contact constraints requires care to address the numerical
challenges associated with discontinuous dynamics, which make straight-
forward application of derivative-based techniques such as the Extended
Kalman Filter impossible. In this paper, we derive an approximate max-
imum a posteriori estimator that can handle rigid body contact by ex-
plicitly imposing contact constraints in the observation update. We com-
pare the performance of this estimator to an existing state-of-the-art
Unscented Kalman Filter designed for estimation through contact and
demonstrate the scalability of the approach by estimating the state of a
20-DOF bipedal robot in realtime.

Keywords: State Estimation, Dynamics, Kalman Filter, Rigid Body
Contact, Optimization

1 Introduction

Achieving reliable state estimation in the presence of uncertain dynamics and
noisy measurements is a prerequisite for developing robust feedback controllers.
This is particularly true for robots that experience impacts or transitions be-
tween static and sliding contact. When these discontinuous events are not ex-
plicitly accounted for, they can lead to large estimation errors and catastrophic
failures—highlighting the need for efficient and practical estimation algorithms
that reason about whole-body contact interactions.

Although state estimation for systems with differentiable dynamics has been
studied extensively, the problem changes dramatically when robots interact with
their environment through rigid body contact. For example, a rigid object col-
liding with, then sliding across a flat surface is subject to non-linear manifold
constraints, discontinuous changes in velocity, and Coulomb friction. This re-
quires machinery beyond standard recursive estimation approaches such as the
Extended Kalman Filter (EKF) [1].
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In this paper, we develop an approximate maximum a posteriori (MAP) es-
timator using ideas from the constrained Kalman filter [2] and the complemen-
tarity constraints proposed originally by Stewart and Trinkle [3]. Our approach
simultaneously estimates the system state as well as the contact forces during
each update, and guarantees that they are physically consistent with our time-
stepping model of rigid body contact.

We compare this formulation directly to a state-of-the-art Unscented Kalman
Filter (UKF) [4] using a simulated example where the UKF fails to describe the
qualitative behavior of a single rigid body system. We also evaluate the proposed
filter on a publicly accessible physical planar pushing dataset and compare es-
timation performance against motion capture measurements using the Cassie
bipedal robot walking overground.

2 Related Work

Traditional approaches to estimation in the presence of rigid body contact,
such as locomotion, often use simplified dynamic models to perform estimation
updates. Successful approaches for estimation on walking robots have used mod-
els such as the linear inverted pendulum to perform estimation on the floating
base alone [5-7], while others factor the body dynamics into the floating base
and the joint angles, estimating them separately, and use information from the
foot kinematics to help localize the floating base [8-12]. These approaches sac-
rifice accuracy by ignoring the dynamic interactions between the joints and the
floating base, but more importantly they often rely on simplifying assumptions
like no slip at the contact points and the presence of accurate contact sensors to
resolve the active contact mode. As a result, the robot is restricted to conserva-
tive behaviors that avoid slipping; violating this assumption quickly causes the
filter to fail.

Another approach is to use a hybrid model to perform state estimation [13],
unfortunately the reliance on accurate contact sensors makes the filter sensitive
to unmeasured contacts that can cause large estimation errors. Other work has
been done to estimate external forces applied to articulated rigid body systems,
so contact forces can be inferred without direct measurement from a contact
sensor [14]. This is a big step towards full body estimation through contact
by reasoning about external forces applied at arbitrary locations, but doesn’t
address the dynamics of contact that are responsible for producing these forces.

Several estimation techniques have been explored that attempt to explicitly
model contact dynamics. For estimation in low dimensional state spaces, Koval
et al. developed the Contact Particle Filter (CPF)[15] and the Manifold Particle
Filter (MPF) [16]. The main insight behind the CPF and the MPF was that
contact constrains the dynamics evolve on a lower dimensional manifold of state
space (i.e. the contact manifold). This problem is inherent to sampling-based
approaches because the probability of sampling a lower dimensional manifold
is zero, resulting in particle starvation. The CPF gets around this by sampling
from a mixture model over all of the contact manifolds. The MPF takes advan-
tage of this low dimensional contact manifold to focus sampling efforts, allowing
the particle filter to extend to higher dimensions. Unfortunately, the curse of di-
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Fig.1: Two illustrations of fundamental problems associated with the UKF in the
presence of the inequalities associated with contact. When sample points are generated
(a and d) samples are either infeasible or have different contact modes than the mean
estimate. In the first sequence (a-c) the resulting estimate (c) is infeasible even though
all of the samples are feasible. In the second sequence (d-f) the resulting estimate (f)
is feasible, but has a contact mode that is different from any of the individual sample
points. In our experience this is the more common behavior, biasing the estimate away
from the contact manifold.

mensionality makes the particle filter intractable as the state dimension grows,
because the number of necessary particles grows exponentially with the state
dimension.

To allow the estimation problem to scale to higher dimensions Lowrey et
al. [4] developed a UKF to perform estimation through contact. The UKF avoids
the curse of dimensionality by approximating the state distribution as Gaussian,
which affords an efficient representative sample set that grows linearly, rather
than exponentially with the state dimension. In our experience the UKF fails to
accurately describe contact dynamics for the same reasons that cause particle
starvation in the particle filter; it is inaccurate to draw sample points from a full
Gaussian distribution when the dynamics are evolving on a lower dimensional
contact manifold. This causes the UKF to sample infeasible states that can
produce non-physical behavior. Figure 1 illustrates two situations that cause the
UKF to produce poor estimates in the presence of contact. In practice, the most
common behavior is that the UKF produces estimates that are biased away from
the contact manifold.

There have been a few examples of derivative-based approaches to estimation
through contact. Earlier work by Lowrey et al. developed an EKF using a smooth
approximation to the contact dynamics [17]. This filter was prone to divergence
during contact events because of the large derivatives involved when approximat-
ing the discontinuous dynamics with a smooth model. A more robust approach
to derivative-based estimation is based on constrained optimization [2], which
does not sacrifice the integrity of the model by making a smooth approximation
to the dynamics. Xinjilefu developed a variation of a constrained dynamic esti-
mator for bipedal walking [10]. Xinjilefu’s approach uses contact sensors on the
feet to infer the contact mode, and solves for the estimated state and contact
forces with a quadratic program by assuming that the feet cannot slip. These
assumptions limit the use of this filter to conservative walking on robots with



4 Patrick Varin and Scott Kuindersma

contact sensors on the feet, and is not easily extensible to different domains, e.g.
manipulation, where sliding contact is more prevalent.

3 Background

The filter we present here is most reminiscent of the constrained optimization
work by Xinjilefu [10], but provides a more general framework for estimation
through contact and can be applied to arbitrary rigid body systems. In order to
develop the Contact Constrained Kalman Filter (CCKF), we first describe our
model of rigid body contact and the constraints imposed by this model, then we
incorporate these constraints into the constrained Kalman filtering framework.

3.1 Contact Constraints

Stewart and Trinkle [3] developed a time-stepping rigid body model for con-
tact as a constraint satisfaction problem. These dynamics compute the state at
the next timestep as the solution to a linear complementarity problem (LCP).
This problem can be solved with a variety of techniques such as, Dantzig’s al-
gorithm [18], Lemke’s algorithm [19], PATH [20], etc. Anitescu and Potra [21]
later proved that this LCP is solvable. These timestepping dynamics form the
basis for many popular physics engines including Bullet [22], Open Dynamics
Engine [23], and Dynamic Animation and Robotics Toolkit [24]. We reintroduce
these constraints and develop their physical intuition here.

We can approximate the continuous dynamics of a rigid body system with a
discrete time system using a semi-implicit Euler update,

Vg1 = Vg + AtH;;l (Bkuk —Cr — G+ JEAk) (1)
Gry1 = qr + Atvgya, (2)

where ¢ and vy are the generalized position and velocity of the system, H,
C, and G represent the mass matrix, Coriolis terms, and gravitational forces,
respectively, B maps control inputs to generalized forces, and J is the Jacobian
that maps external forces, A, to generalized forces. In the absence of contact,
A =0, so Equations (1) and (2) are sufficient to compute the dynamics. During
contact, however, we compute A by considering contact constraints.

The first constraints relate to collisions and the normal force required to
prevent interpenetration. Both the signed distance between two bodies, ¢(q),
and the normal force, A", must be non-negative. Furthermore, the contact forces
can only be nonzero when two bodies are in contact. These constraints can be
written as

¢(q) >0, A" >0, d(g)" A" =0. (3)

This last constraint says that if the bodies are touching, ¢ = 0, the force is
allowed to be non-negative, \™ > 0, but if the bodies are not touching, ¢ > 0,
then there can be no contact force between them, \™ = 0. This is known as a
complementarity constraint and can be written succinctly as

$(q) >0 L A" > 0. (4)
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Because ¢ is generally a nonlinear function of ¢, this is a nonlinear comple-
mentarity constraint. For computational reasons we will instead use the linear
complementarity constraint

Ok + Vo qre1 —aqe) >0 L AL > 0. (5)

In addition to non-penetration, we also want to satisfy constraints on tan-
gential friction. Rather than using the usual second order Coulomb friction cone,
we use a polyhedral approximation to the friction cone, allowing us to remain
within the LCP framework. We construct the contact force, A, by decomposing
it into the normal and tangential components,

A=nA\"+Dg, >0, (6)

where n € R3*! is the surface normal, and the columns of D € R3*? are unit
vectors that positively span the tangent plane. In practice we use d = 4, but any
d > 3 would work where larger values provide a more accurate approximation
of the friction cone at the expense of additional decision variables. We can then
write the polyhedral friction cone constraint as

PA" — el'p>o0. (7)

It is assumed that the tangential friction respects the maximum dissipation
principle (i.e. that contact forces are chosen to maximize dissipation of kinetic
energy) so the tangential contact force must be an optimal point for the opti-
mization problem

M = argmin o7 JT\ (8)
)\t

subject to pA™ —e’3 >0 9)

B = 0. (10)

The first-order necessary conditions, i.e. Karush-Kuhn-Tucker (KKT) condi-
tions, for this problem can be written as

DT Jv+nfe>01 >0, (11)
pA" —e’B>01Ln>0, (12)

where 7 is a Lagrange multiplier that can be interpreted as the magnitude of
the tangential velocity. Intuitively the first condition enforces that the force of
friction opposes the tangential velocity, while the second condition ensures that
there can only be tangential velocity (sliding) when force of friction is on the edge
of the friction cone. Together Equations (1-2), (5), and (11-12) specify Stewart
and Trinkle’s time stepping rigid body dynamics, and will be the foundation of
the filter we develop here.
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Fig.2: Contact constraints that govern rigid body contact dynamics. Left: Non-
penetration and positive normal force, the normal force can only non-zero if the signed
distance function, ¢, is zero. Center: Polyhedral friction cone, we can approximate the
Coulomb friction cone with a polyhedral cone. Right: Complementarity between tan-
gential velocity and tangential friction. There can only be tangential velocity when the
force of friction is on the edge of the friction cone.

3.2 Constrained Kalman Filter

We can build these contact constraints into a MAP estimator using the con-
strained Kalman Filter [2]. Consider the discrete time stochastic system:

Tpy1 = fap, ur) + wi wy, ~N(0,Q) (13)
Yk = h(zy) + vk v, ~ N (0, R), (14)

where x is the state, uw is a control input, and y is a noisy measurement. If
the prior on x is Gaussian with mean z;_1 and covariance Pi_1, then we can
compute the mean and covariance of an approximate posterior by linearizing
the dynamics, F' = %, and the observation function, H = %, and using the

Extended Kalman Filter (EKF) updates:

x, = f(xp_1,up—1) (15)
Py =FP 1 FT +Q (16)
zp =, + K(yx — h(zy,)) (17)
P = (I - KH,)P;, (18)

where K is the Kalman gain.

Because the mean of the Gaussian distribution is also the mode, the obser-
vation update (17) can be interpreted as an approximate maximum a posteriori
(MAP) estimate—up to the linearization of f(-) and h(-)—that can be com-
puted in closed form because the negative logarithm of a Gaussian pdf is a
convex quadratic function.

This interpretation of the Kalman filter as the MAP estimator allows us to
naturally incorporate dynamic constraints into the filter by writing the observa-
tion update as a constrained optimization problem:

minimize Az P~ Az 4 (§ — HAz)R ' (§ — HAz) (19)

x
subject to Geq(z) =0 (20)
gin(x) <0. (21)
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where Az = x, —x, is the state correction and g, = yr —h(x, ) is the innovation.
If the constraints geq(-) and gin(-) are linear then this can be solved efficiently
as a quadratic program (QP). This was the approach used by Xinjilefu [10] in
developing the estimator for the Atlas humanoid robot. The technique that we
will develop here is similar in spirit, but does not rely on contact sensors to
resolve the active contacts, and allows for dynamic contact interactions such as
slipping by taking a fundamentally different approach to contact.

4 Contact Constrained Kalman Filter

The contact constraints developed in Section 3.1 suggest that in order to
perform state estimation through contact we need to consider both the state, x,
as well as the contact forces, A\. While the Stewart-Trinkle dynamics compute
the contact forces as an implicit function of the state, this mapping is discon-
tinuous and cannot be linearized, precluding its use in the EKF framework.
To develop the Contact Constrained Kalman Filter (CCKF) we apply the con-
strained Kalman filtering approach and explicitly optimize over both the state
and the contact forces.

We can rewrite the discrete time dynamics (Equations 1 and 2) as

2771 7T
zp = &+ S M, JT = [AAttIl{q_le} ’ (22)
where 2y, is the state of the unconstrained system at time k (capturing the state
changes from the inputs, gravity, etc.) and JT maps contact forces to changes
in the generalized coordinates. The objective for the optimization function then
becomes

(Bl - [6) e s (] - [3])
+ (G, — Hp Az — HA\NTR™Y (g1, — Ho Az — HyN),  (23)

and the contact constraints become

nJ 0 0] [qw o —ndqr—1 I 0 \n
0 DJE| || + 0 >0L |0 T [Bk}zo. (24)
0 0 I| |m 0 p—ET| L7k

Note that the complementarity constraints separate the decision variables
nicely into two sets that together form a bilinear constraint. These can be loosely
interpreted as the primal variables, x, n, and the dual variables A", 8 associated
with contact dynamics. Defining these new variables as & = [¢7 nT]T and 7 =

T . N .
[)\"T 5T] we can write down the full optimization problem for the observation
update concisely as

T,z z z

AT . AT
minimize {z] Q [1 -7 {aj] (25)
subject to AZ+b>01LCzZ>0. (26)
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Algorithm 1: The Contact Constrained Kalman Filter

1 initialize z and P;

2 f(z) is the unconstrained dynamics from (1) and (2) with A = 0;
3 h(z, ) is the observation function;

4 while true do

/* compute the process update with no contact forces */
5 | &= f(x);
6 F= %;
7 P~ = FPFT;
/* compute the observation update via constrained minimization */
J=y—h@);
H, = 9% and H, = 9,
10 x, A\ = arg min (23) subject to (24);
11 P=P - P HI(H,P HI+R)"'H,P~;

12 end

As we noted, this optimization problem doesn’t require contact sensors to
resolve the contact mode, but information from contact sensors can be natu-
rally incorporated via the contact force dependence in the observation function
h(z, A).

4.1 Quadratic Program with Complementarity Constraints

In order to implement the CCKF we must solve the optimization problem
defined by (23) and (24). This problem is a special case of a quadratic program
with complementarity constraints (QPCC). In our experiments, we chose to solve
this problem via mixed-integer optimization. We can formulate the complemen-
tarity constraint by introducing a binary variable, y, that determines which of

the equality constraints are active. This results in the mixed integer quadratic
program (MIQP):

minimize MTQ m —r mT (27)
subject to Az +b>0 (28)
Cy=>0 (29)

y (A +b) =0 (30)
1-—y)TCcz=0 (31)

y € {0, 1}V, (32)

We solve this MIQP using the commercial optimization package Gurobi [25]
that employs a branch-and-bound method to find the exact solution. Warm
starting the binary variable at each time step allows the optimizer to quickly
prune the branch-and-bound tree. As we show in our results, this has a positive
impact on both the mean and variance of update times.

5 Results

We evaluate the Contact Constrained Kalman Filter in three scenarios.
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1. We demonstrate the practical shortcomings of the state-of-the-art UKF in
a simple single 6-DOF rigid body scenario where the UKF fails to describe
the system’s behavior, but the CCKF succeeds.

2. We validate the performance of the CCKF during sliding using examples
from a large physical planar pushing dataset.

3. We demonstrate that the filter scales to more complex systems by evaluating
estimation and timing performance on a 20-DoF physical biped.

The filter parameters for each of these experiments are detailed in Table 1.
Because the UKF doesn’t successfully capture the behavior of the simple toy
example in the first experiment, we do not use the UKF as a baseline in sub-
sequent experiments. For example, in the planar pushing experiment the UKF
predicts states that are non-planar, hovering above the pushing surface, whereas
the CCKF correctly predicts planar states.

5.1 Simulated Data

One predicted advantage of the CCKF over the comparable state-of-the-art
UKF approach [4] is that the UKF tends to produce non-physical behavior near
the contact manifold (Figure 1) while the CCKF handles inequalities arising from
the contact manifold by optimizing over a truncated Gaussian. To compare the
performance of the proposed filter and the UKF on a simple system, we evalu-
ated both filters on simulated data of a rectangular prism rotating and falling
onto flat ground. We approximated the sensor data that would be obtained from
system with an IMU and visual or proprioceptive sensors by generating noisy po-
sition, gyroscope, and accelerometer measurements. Since both approaches use
a different formulation of rigid body dynamics, we chose a simulator that uses
neither. Forward simulation was performed using a compliant contact model in
Drake [26] that approximates rigid body contact but allows for slight interpen-
etration according to a user specified Young’s Modulus. In our experiments we
used all of the default parameters except for the friction coefficients for which we
used p = 1.0 to be consistent with our implementation of the UKF. Both filters
used the same parameters, operating at 100Hz. The covariance parameters R
and P, were chosen to reflect the true measurement noise and initial state error,
while @ was chosen so that both filters converged to steady state before the first
contact event.

Figure 3 illustrates the performance of both filters from 20 randomly initial-
ized state estimates for a single forward simulation. The UKF performs well up
until the second collision, at which point the contact manifold constrains two
degrees of freedom, corresponding to at least two infeasible sigma points, and the
filter begins to diverge. After the brick has settled, we can see that the state es-
timate is biased above the ground, away from the contact manifold. The CCKF,
however, shows good tracking performance throughout the entire trajectory.

5.2 Planar Pushing Dataset

In order to demonstrate the performance of the filter during frictional sliding,
we evaluated the filter on the PUSH dataset, a planar pushing dataset collected
by the MCube lab at MIT [27]. This dataset contains pose data of various shapes
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Fig. 3: Simulation results of a brick falling on flat ground. Top: the CCKF accurately
estimates the brick trajectory through the contacts, while the UKF struggles near the
contact manifold.

being pushed on a number of surfaces. While many of the pushing examples from
this dataset involve only quasi-static motion, which does not highlight the full
capability of this filter, there are a number of examples of aggressive pushing
where the object continues to slide after contact with the manipulator is broken.

We selected the most aggressive (largest acceleration) pushes of the rect1
object, a rectangular object, on delrin, which was reported to have the most
consistent coefficient of friction of the surfaces used in the dataset (0.14+0.016).
Detailed geometric and inertial parameters for this object are provided with the
dataset. The coefficient of friction was set to the experimentally reported mean.

We ran the filter on pose data that was corrupted with zero mean Gaussian
noise. The filter parameters were empirically chosen to maximize the filter per-
formance, except for R which was chosen to reflect the true added measurement
noise. Figure 4 illustrates the filter performance on an example sliding trajectory.
When the coefficient of friction is set correctly the filter exhibits good perfor-
mance, correctly estimating the time at which the object comes to rest. When
the friction coefficient is too large the velocity estimate to drops to zero prema-
turely, and when the friction is too small the estimate overshoots the true state.
The observation update is able to correct the position and orientation for all
examples with zero steady state error, except in the frictionless example where
the dynamics are sufficiently different.

It is interesting to note that while the observation update is able to correct
errors in the position, it cannot correct the velocity estimate because it is not di-
rectly observed. Figure 4, illustrates that a misspecified model, such as incorrect
friction, can produce velocity trajectories that are inconsistent with the position
trajectories. Such inconsistencies may be improved with a richer measurement
model that is able to correct the inconsistent velocities in the observation update,
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Fig.4: The mean state estimates from an example sliding trajectory with various co-
efficients of friction. = 0.14 has the best agreement and was the mean coefficient of
friction reported with the experimental data.

or a longer filter horizon that can use multiple sequential position measurements
to inform the velocity estimate.

5.3 State Estimation for a Biped

To demonstrate that this filter scales to complex robots, we collected data
using a Cassie bipedal robot walking in two scenarios: a scenario that is indicative
of stable walking on flat ground and a scenario where we lubricated the walking
surface, causing the robot to slip.

Cassie has 20 degrees of freedom (DOF): 6 DOF arise from the floating
base, 10 DOF in the joints are directly actuated, and the 4 remaining DOF
are stabilized with stiff springs. Additionally, each leg contains a kinematic loop
that are represented as additional constraints in the filter. We used the inertial
parameters and the spring constants provided by the manufacturer. Cassie is
outfitted with a 6-axis IMU and 14 joint encoders that measure the position
and velocity of the joints. The prepackaged software provides an orientation
estimate from the IMU, but does not log the accelerometer data, so we used
the orientation estimate as a sensor in our experiments in lieu of the underlying
accelerometer data.

Walking The walking experiment was conducted in a motion capture studio to
gather ground truth position data. The robot walked around the motion capture
studio for approximately 5 minutes, then onboard sensor data was synchronized
in time with the motion capture measurements.

Figure 5 illustrates the performance of the estimator during a typical step
and over a large step sequence. Starting from a 20 random initial conditions
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Filter Pe{formance for Bipedal Wallking
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Fig.5: The filter running on a Cassie series robot in a motion capture lab. Top: an
example of a 30 second walking trajectory, we see good agreement between the motion
capture data and the filtered estimate. Bottom: the filter performance during a typical
step, starting from a 20 random initial estimates. Note that most of the initial estimates
that underestimate the height are immediately corrected to the true height, preventing
penetration with the floor. The one example that does not immediately track the correct
height has a corresponding pitch/roll error that keep the feet above the ground.

we can see that the filter converges reliably to the true state within one step.
The 30 second walking sequence demonstrates that the filter maintains good
performance through many contact mode changes.

On a large robot like Cassie, the filter operates at an average of 174 Hz.
Although the underlying optimization problem is an MIQP, the contact mode
changes much more slowly than the filter update frequency, so we can achieve
fast performance by warm starting the contact mode in the optimization prob-
lem. This allows the optimizer to quickly prune the branch-and-bound tree and
arrive at the globally optimal solution in fewer iterations. Figure 6 illustrates
the advantage of warm starting the optimization with the last contact mode.

Slipping Estimation while walking in ideal scenarios—e.g., where the proba-
bility of slipping is very small—is important, but it is also critical to maintain
good state estimation during unplanned slipping events. To test the performance
of the estimator in a highly dynamic contact scenario we lubricated one of the
feet of our bipedal robot to encourage slipping. We executed a nominal walking
controller that does not implement slip-recovery, causing the robot to fall on the
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Fig.6: The timing distribution for the filter running on Cassie walking data. Warm
starting tightens the timing distribution and significantly decreases the mean update
time.

first step. We compare the performance of the CCKF against the performance of
a more traditional walking estimator based on the estimator developed for the
Atlas robot during the DARPA Robotics Challenge [11].

For safety we conducted this test while the robot was attached to a harness
outside of the motion capture lab. As a result we can only make qualitative
comparisons between the filter results and a video of the experiment. However,
these results clearly show that the walking estimator that relies on a no-slip
assumption quickly accumulates large errors in floating base position, whereas
the CCKF correctly predicts that the stance foot will slip while the floating base
has minimal lateral motion. Repeating the slipping experiment while varying the
orientation of the approximate friction polyhedron used by the filter produces
virtually indistinguishable estimation results.

lParameter ‘ Falling ‘Pushing‘Bipedal Walking‘Bipedal Slipping‘
Po-position (m?) 1x1072[1 x 1077 1x1077 1x1077
Py-orientation 1x1072]1x 1073 1x1073 1x1073
Po-velocity (27), (24)* 1107211072  1x 107 1x1073
Q-position (m?) 1x107%|1 x 107° 1x1078 1x107°
Q-orientation 1x10731x 1074 1x1073 1x1073
Q-velocity (M—f) (“;;12) 1x10°31x 1074 1x10°? 1x10°%
R-position (m?) 1x 10731 x 1075 1x107? N/A
R-orientation 1x10731x 1073 1x1072 1x 1072
R-angular rate (’"‘;3’2) 1x107% N/A 1x107° 1x107°
R-acceleration (’:—f) 1x1073 N/A N/A N/A
Rejoint data (rad®), (*22)| N/A | N/A 1x 107 1x 107

Table 1: Filter covariance parameters used in the experiments presented here.



14 Patrick Varin and Scott Kuindersma,

Contact Constrained
Kalman Filter

Traditional Filter
With No-Slip

Fig. 7: Top: Video frames at key moments of the slip. Middle: The state estimated by
the CCKF. Bottom: The state estimated by a filter that factors out the joints from the
floating base and uses a no-slip assumption at the feet.

6 Conclusion

We developed a constrained Kalman filter as an approximate MAP estima-
tor for rigid body systems with frictional contact and evaluated its performance
in several simulated and physical estimation tasks. In addition to addressing
some fundamental problems that arise from sample-based estimators, our re-
sults suggest that the filter performs well through sliding and collision events.
We also demonstrated scalability of the algorithm, despite its non-convexity, by
estimating the state of a 20-DoF bipedal robot in realtime.

Although the filter demonstrates good empirical performance, we provide
no theoretical guarantees on the convergence. In fact, it is not difficult to gen-
erate examples in which the discontinuous contact events produce multimodal
distributions that may cause the filter to diverge. In such a scenario it may be
desirable to represent multimodal belief distributions or to estimate the distribu-
tion over contact modes in a similar fashion to the Contact Particle Filter [15].
In practice, it may be possible to solve the problem of multimodality by having
sufficient measurement power. For example, even if a contact event causes the
prior distribution to become multimodal, the right information from the sensors
during the likelihood update can allow the filter to choose the correct mode.

It is also worth noting that although we show good empirical performance
when solving the optimization problem described by (23) and (24), the number
of contact modes grows exponentially with the number of contact pairs. This sug-
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gests that for a larger number of contacts the problem may become intractable,
and different solution methods for solving the QPCC should be considered.

Another limitation of the CCKF is that it assumes knowledge of the geometry
and frictional properties of contact with the environment. Even in cases where
local contact geometry can be accurately measured, it may be necessary to es-
timate the coefficient of friction online. In fact, recent work has demonstrated
that even in controlled environments it may not be valid to assume that the
coeflicient of friction is constant, but rather that it should be treated as a ran-
dom variable that follows some distribution [27]. An alternative approach would
be to use a dual estimator to estimate the contact parameters, such as friction
and geometry, simultaneously with the state. Recent work has shown that many
popular contact models lack the descriptive ability to describe phenomena such
as back-spin [28] and data-driven contact models can significantly outperform
purely theoretical approaches [29].
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