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Abstract

In this paper, a new control framework for an insect-scale flapping-wing vehicle is presented that exploits passive aerodynamic
effects to stabilize the attitude dynamics. Many flapping-wing robotic flyers and flying insects share a common morphological
feature in that the center of mass (CoM) is below the center of pressure (CoP), which makes the hovering configuration
intrinsically unstable with open-loop control. Motivated by the fact that the CoM should be ahead of the CoP to ensure
the longitudinal stability of the flight dynamics, a new coordinate system is proposed by placing a virtual control point
(VCP) above the CoP. The dynamics in the new coordinates are derived using a near-identity diffeomorphism which admits a
partial feedback linearization with stable zero dynamics. The behavior of the zero dynamics resembles the dynamics of a 3D
pendulum with an aerodynamic damper. An adaptive controller is proposed to make the upright orientation almost globally
asymptotically stable over a bounded uncertainty of the aerodynamic drag coefficient. The controller is evaluated in simulation
with a Harvard RoboBee following a virtual control point reference trajectory.
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phase; adaptive control; tracking; 3D Pendulum.

1 Introduction

Over recent decades, research in the field of small-
scaled flapping-wing micro aerial vehicles (FWMAV)
has rapidly expanded, inspired by the ability of flying
insects to perform aggressive maneuvers with seemingly
effortless ease. Analysis of the morphological parame-
ters of various flying insects has shown that the wing
base attached to the body is often higher than the in-
sect’s center of mass (CoM) [8]. This unique feature is
reflected in many insect-scale FWMAV, including the
Harvard RoboBee (81mg and 170Hz flapping frequency)
[21], the CMU piezoelectric-driven FWMAV (160mg
and resonance at 35Hz flapping frequency) [12], and the
motor driven robotic HummingBird prototype (12g and
34Hz flapping frequency) described in [32].
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Past research suggests that the vertical displacement be-
tween the CoM and the wing base introduces a body
pitch oscillation which renders hovering intrinsically un-
stable, resulting from the aerodynamic drag acting on
each wing [5,25,30]. The open-loop instability of hover-
ing has been extensively studied in model-based simu-
lations, which have demonstrated this effect using tech-
niques including the application of differential geomet-
ric higher-order averaging [29], the use of Floquet theory
to analyze hovering stability in periodic orbits [27], and
simplification via disregarding the wing inertial effects
[5,25,30]. See [28] for surveys of control methods.

Prior work on hovering control for FWMAYV has lever-
aged generalized averaging theory [29] and geometric
methods similar to those used in standard quadrotor
control [21,33]. These controllers operate by suppress-
ing the unstable part of the dynamics to locally stabilize
while hovering. (An extensive review of the control ar-
chitectures of FWMAV can be found in [28].) In partic-
ular, previous controllers for the Harvard RoboBee have
treated the instability resulting from the separation be-
tween the CoM and the center of pressure (CoP) (on av-
erage at the wing base of the vehicle, as in Fig. 1) as an
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attitude disturbance, rejecting it with other force and
torque disturbances experienced in flight. Techniques
used to stabilize vehicle pitch in this manner include the
addition of a rotational damper to achieve passive at-
titude stability [30], the application of a simple torque
proportional to the angular velocity to stabilize the up-
right orientation [11], and the design of an adaptive slid-
ing mode controller to reject unmodeled disturbances
(including those due to CoM and CoP separation) [6].

Instead of rejecting the aerodynamic drag effects, we
present a new approach designed to take advantage of the
drag in order to stabilize the upright orientation of FW-
MAYV. This idea is motivated by the principle that the
CoM should lie above the CoP to obtain static stability
in flight [1]. A controller is designed to stabilize a virtual
control point (VCP) along the body z axis above the ve-
hicle, as shown in Fig. 1. The system is then analogous
to a 3D pendulum, where the VCP serves as the pivot
point, and the stroke-averaged aerodynamic damping at
the CoP dampens attitude oscillations (since the pivot
point lies above the CoP). This is understood by con-
sidering the near-identity diffeomorphism introduced in
[24], which controls nonholonomic SE(2) vehicles. Both
the proposed near-identity diffeomorphism in this paper
and that in [24] allow partial feedback linearization with
stable zero dynamics. However, the stability proof in [24]
cannot be directly transferred, as its asymptotic stability
comes from a nonholonomic constraint and there are no
such nonholonomic constraints for the dynamics consid-
ered herein. The proposed controller guarantees almost
global asymptotic stability (AGAS) to the desired in-
variant set (the hovering configuration), similar to con-
trol of a 3D pendulum with a fixed base pivot [4]. Addi-
tionally, the VCP-based controller is advantageous in its
reduced requirement for yaw torque during trajectory
tracking, which is commonly a weak controlled torque
for FWMAV [2,9,31,13] An adaptive controller is also
proposed to show robustness over bounded uncertainty
in the aerodynamic drag coefficient using the projection-
based adaptation in [18]. This proposed adaptive con-
troller also preserves the AGAS property. Finally, an ap-
plication is demonstrated in the design of a tracking con-
troller, following a reference trajectory with the VCP in
simulation.

2 Modeling

We consider a standard rigid body dynamics model (six
degrees of freedom) with a stroke-averaged aerodynamic
force, controlled via the thrust and torque acting on the
rigid body. This model, and underlying assumptions, is
appropriate for insect-scale FWMAVs due to their rel-
atively small wing mass. We use the Harvard RoboBee
as an example system for this work. The vehicle flies via
amplitude-modulated harmonic voltage signals which
each drive a piezoelectric bimorph actuator with a reso-
nant frequency of approximately 170Hz, and has a wing

J-frame

Fig. 1. Harvard RoboBee coordinates.

mass less than 1% of its the total body weight [10]. Previ-
ous control approaches for this system [21,7] have found
desired thrust and torques, then converted these to volt-
age signals using a predefined mapping [21].

Let the Z-frame and B-frame represent the inertial and
body-fixed frames, respectively, as shown in Fig. 1. The
origin of the B-frame is located at the center of mass
(CoM) position and its orientation aligns with the prin-
cipal axis of the vehicle, such that its z-direction coin-
cides with the direction of thrust. The configurations
of a rigid body can be represented by the special Eu-
clidean group, SF(3), which is a semi-direct product of
R? and the special orthogonal group SO(3). In this pa-
per, (r, R) denotes a homogeneous coordinates [22] of
SE(3) = R® x SO(3), in which r represents the origin
of B-frame in the Z-frame, and R represents the orien-
tation of B-frame relative to the Z-frame.

Let v be the velocity of the CoM in the Z-frame, w €
R? be the instantaneous body angular velocity, m be
the total mass, g be the gravity, and I be the moment
of inertia. By using the conventional hat operation, ™ :
R3 — s0(3), where so(3) C R3*3 is the space of skew-
symmetric matrices, the full rigid body dynamics are

r=v (1)
R=RG (2)
v=—ges + TRe3 + Fuero/m (3)
Iw=—wxIw+ T+ Taeros (4)
where x is a cross product, e3 = (0,0,1)" is an ele-

mentary unit vector in R3, T is a thrust normalized by
the mass, and 7 = (71, 72, 73) is an external torque. The
dynamics in (3-4) contain the aerodynamic drag force,
Faero, and the induced torque, 74ero. The moment of in-
ertia, I € R3*3  is a diagonal matrix with (I, Iy, 1:2)
as its diagonal components and a skew symmetric ma-
trix, @, is given by a relation, Oy = w x y, and 0 € R3
represents the zero vector.

2.1 Stroke-Averaged Aerodynamic Damping Model

Wind tunnel experiments [30] have shown that the
stroke-averaged aerodynamic drag is approximately a



linear function of the velocity of the center of pressure
point of the wing. Let b, > 0 be the stroke-averaged
aerodynamic drag coefficient. By assuming the sym-
metric configuration of both wings, the stroke-averaged
aerodynamic drag model can be formulated as

Faero = *bw (’U + R(W X Tw)) (5)
Taero = Tw X RTFaerm (6)

where r,, := leg is the centroid of the two wing CoPs in
B-frame, and [ is the distance to the CoM. The centroid
of the CoP is shown as a blue circle in Fig. 1, and the
CoM is shown as a red circle in Fig. 1. The velocity of
the CoP, V.2, and F,.,, are also shown in the figure. The
exact scale can be found in [11].

3 Preliminary Notions of Set-Stability

Let D := T'SE(3) be the domain of (1-4), with T'SE(3)
the tangent bundle of SFE(3). Suppose that Ry, Ry €
SO(3), then

dr(Ry, Ry) = |[Isxs — R Ral|r, (7)

where || - ||F is a Frobenious norm in R3*3, is a met-
ric on SO(3). See [15] for the topological equivalence
between different metrics of SO(3). Suppose that z =
(rz, Ry, Vg, wy) € Dand y = (1y, Ry, vy, wy) € D. Then,
a distance between two configurations is given by

d(z,y) = [ lre = 1yl5 + Jve = vy |3 + lws — wy |13

+dr(Re, Ry
A distance to a set using the above metric is defined as

[|z[[r = infyepd(a,y). (®)

The following definition of set-stability is used in this
paper. A similar definition can be found using the com-
parison functions in [20], and the “almost global” prop-
erty can be found in [19].

Definition 1 A set M C D is

(1) stable with respect to (1-4), if for € > 0, there ex-
ists 6(€) > 0 such that if |||x(0)||pm < 0(€), then
lz@)llm <€,

(2) attractive with respect to (1-4), if there exists an
open neighborhood U of M such that if (0) € U,
then limi—yoo||2(t)|| A = 0.

The set is asymptotically stable if the set is both stable and
attractive. In addition, the set is almost globally asymp-
totically stable if it is asymptotically stable and the set of
initial conditions such that limi_oo||z(t)||pm # 0 has a
zero Lebesgue measure.

4 A New Coordinate System via Near-Identity
Diffeomorphism

In this section, a new coordinate for the dynamics in (1-
4) is proposed by using a near-identity diffeomorphism.
Pick a positive & € RT and consider the following map-
ping, ®, : D — D, defined everywhere in the domain,

m(z) r+ yRry,
I me) | vt yR(w xry)
(ba(x) A R - R (9)

where v = 1 + «a. It is obvious that ®,, is invertible, and
the Jacobian of ® has full rank for all z, and so &, is a
global diffeomorphism. If « = —1, then ®, becomes the
identity map; therefore, this is a near-identity diffeomor-
phism. In this paper, a > 0 is assumed. The intuition of
this mapping is such that the origin of the body frame is
shifted up by (1 + a)Rry, which is the direction of the
body z axis. This new virtual control point (VCP) refers
to the point above the CoP of the vehicle, shown by the
green circle in Fig. 1.

Suppose that the vector field of (1-4) is rearranged to
a control affine form with (f(x), g(x)) with drift f(x),
actuation g(z), and control u = (T, 7). Observe that
7 (z) = n2(z), and by defining n; (x) as an output of the
system, the dynamics of the new coordinate in (9) can
be transformed to an almost normal form (the control
term appears in the zero dynamics). The Lie derivatives
of n; along with f and g (see definitions in [16]) are

Lim(x) = fi(R,w) = bu(C1(R)n2(2) + Ca(R)w) (10)
LgLym(x) = (Res; *’YR?wI’l) ; (11)
where ; indicates a column-wise concatenation, and

fi(R,w)=—ges + YR&*ry + vR?wI_l(@Iw)
1 1~
Cl (R) = (Ejgxg — ’)/R’I"wl 17’wRT)

1
Co(R) = oéRa,,(EIgX3 —~NI7172).

Let I3x3 and 033 be the identity and zero matrices, and

A= O3x3 I3x3 B, — O3x3 o (6, IS><3) .
03x3 O3x3 I3y

The topologically conjugate system to (1-4) is derived,
0= A+ Be(Lim + A(R)u) (12)

R=R® (13)
Iy = —0Iw — by R (2 — aR(Gry)) + Eu, (14)



where n = (n1,7m2) " and A(R) := LyLsnm (). Observe
that LyLgmi(z) € R34, while not square, is full row
rank, since rank(e3) = 2, and ejeé; = 0. This dif-
fers from a typical partial output feedback linearization
since the system is not square; however, the row space
of LyLsm (z) is orthogonal to e4 := (0,0,0,1)T, which
indicates that A(R)u in (12) is independent of the yaw
torque 73. Therefore, the output dynamics can be fully
controllable without a yaw torque input and the output
dynamics can be feedback linearizable with three inputs,
(T, 11, 72). In addition, the ws state in ®(z) is fully con-
trollable with 73 and is independent of the output dy-
namics.

5 Stability Analysis of Partial Feedback Lin-
earization Controller

First, a partial feedback linearization controller is
designed to exponentially stabilize the output to
become zero, n = 0. Since A(R) is full row rank,
there exists a pseudo inverse, such that AT(R) :=

AR)T(A(R)AR)T)~".
5.1 Partial Feedback Linearization Controller

We choose Q. € R6*6 and R. € R3*3 to be posi-
tive definite matrices and pick %k, > 0. Since (A, B.)
is controllable, there exists a unique positive definite
P € RY%6 that solves the continuous-time algebraic Ric-
cati equation (CARE) using (A¢, Be, Qc, R.). The linear
quadratic regulator (LQR) is then used to stabilize the
output dynamics with gain K := R;'B[ P. Then, the
state feedback controller can be defined as

U= AT<R)(_L?¢‘771 () — Kn(z)) — kweaws. (15)
Note that a simple yaw control law, 73 = —k,,w3, in the
last term is used but does not appear in the output dy-
namics in (12) since A(R)es = 0 holds. Now, by substi-
tuting v in (12-14) with the controller in (15),

= (Ac - BcK)n (16)
R=R0G (17)
w:h(va) +91(R)nv (18)
where h(R,w) € R3*! and g;(R) € R3%6 are

Wols b
—wiws 2 (@) (19)
w1w2 kyws
+ €3RT63
(R) ¥ @R (BT - K)) (20)
= — (e —_— —
g1 l’}/ 3 m o c

and a1 = (Ipz — Iyy)/IL... If I,z = I, then the zero
dynamics (when 1; = 12 = 0) equate to a 3D pendulum
in [26] with a rotational damping effect. By using the
proposed controller, the aerodynamic drag acting on the
CoP is transformed such that it behaves as a rotational
damper in the new coordinate system, to eventually help

stabilize to the upright orientation.
5.2 Set of Equilibrium Points

There exist two disjoint sets of equilibrium points for the
nonlinear system in (16-18),

M?fp : {I S D|’I71 =T =W= 67 B;FRTeg = 1} (21)
M! ={zeDlp=n=w=0e R es=—1}. (22)

mnv

Geometrically, the condition for Mjp represents the up-
right orientation with a free yaw angle, whereas the con-
dition for Ml{w represents the inverted orientation. This
is akin to the hanging equilibrium and the inverted equi-
librium for a 3D pendulum in [26]. The set of the union

of two equilibrium sets is denoted as M/ f = M/ UM]:”)

5.8  Stability Analysis of the Full Dynamics

In this section, the set-stability of two disjoint equi-
librium sets is considered. Let the following function
V : D — R be defined as

V(z) =v' P+ lg(l — €3 Res), (23)
Y

where v € R? and P, € R%*? are defined as

R(es x w 15450
v = ( 3 ) 7 Pv _ 243x3 Y3x6 , (24)
7 Osxs kpP
where z = (1, R,w), k, > 0, and Osx¢,0sx3 are zero
matrices. Observe that V' is only positive semi-definite

since w3 does not appear in V. By taking the derivative
of V along (16-18),

V(z) = —v' P, (25)

holds for all v € R? and P e R9%9 is defined as

K>) o)

Observe that Py is a constant matrix, and it is a function
of k. Let S € R*6 be a positive semi-definite matrix:

P (| e
2117(1)10 BT K)T kac

_ m bw T T/ bw o
= M(EBC - K) (EBC - K). (27)



Lemma 2 Ifk, > A (S)/Am(Qc), where Apr(S) is the
mazimum eigenvalue of S and A (Qc) is the minimum
eigenvalue of Q., then Py is positive definite.

PROOF. Since diagonal blocks of Py are invertible, Py
is positive definite if and only if £,Q. — S is positive
definite by Theorem 7.76 in [14]. The condition for k,
suffices to show that k,Q. — S is positive definite. O

5.3.1 Boundedness of the trajectories

Now, pick &, to satisfy Lemma 2, then (25) implies that

V(xz) <0 for all x € D. However, the sub-level set of V/
in (23) is unbounded as V' is independent of ws. There-
fore, the boundedness of the trajectories needs to be
first shown before possibly applying LaSalle’s invariance
theorem (or Barbalat’s lemma) for proving the attrac-
tiveness to the desired set. By considering the dynam-
ics of yaw in (18) separately, the following proposition
and corollary show that the trajectories of (16-18) are
bounded for each initial condition.

Proposition 3 There exists a class K function, By :
[0,00) — [0, 00) such that, for any € > 0, if |ws(0)| < e,
then ||w(t)||l2 < B1(€) for allt > 0.

PROOF. Suppose that |w3(0)| < €, and pick ¢; > 0
such that V(x(0)) < c1€?, then |wi(t)wa(t)] <

1/2(w?(t) + wa(t)?) < c1€? holds for all + > 0
since V(z(t)) < 0. By solving for ws(t) in (18),
lws(t)] < €+ aici€?/ky, holds. Also, by using the in-
equality for the I; and l5 norms,

lw®lle < @l < (2v2e1 + e+ arere/ky. (28)

This is true for all ¢ > 0. The right hand side of (28)
can be shown to be a class K function over ¢, hence the
proposition holds. O

Corollary 4 For any bounded open neighborhood, U, of
Méfq7 there exists a compact subset Q. such that if x(0) €

U, then x(t) € Q. for allt > 0.

PROOF. Let 2 € D be a closure of U. Since V is
continuous, ) is compact, and V(x(t)) < 0, there exists
Vinaz > 0 such that V(é(z(t),y)) < Vinas for every y €
Q where ¢(z(t),y) is a flow starting from y. Now, pick
e > 0 such that all (0) € Q satisfies |w3(0)| < €, then by
invoking Proposition 3, ||n(¢)||3 + ||w(¢)]|3 is uniformly
bounded for all ¢ > 0 over every z(0) € U. Hence, there
exists a compact subset {2, such that z(t) € Q. for all
t > 0 since SO(3) is compact.

5.3.2  Almost global asymptotic stability of M{:p.
Next, the stability of Mjp is shown as follows.

Theorem 5 Ml{cp is a stable set with respect to (16-18).

PROOF. Let ¢ = mazx(Ap(FPy),g/(ly)) and € <
min(1, A (P)/c2)/+/10. Pick € > 0 such that e < & Sup-
pose that the initial condition satisfies ||x(0)\|?wf < e,

then V (2(0)) < cqe holds since
1—eq R'es < infpej—nntr(ls — R' Ry)

holds for all R € SO(3) and all ej Ryes = =+1.
Since V(z) < 0 for all z € D, |In(t)|3 + [lw®)|3 <

26/ Am(P,) + B1(1/€)? holds for all t > 0, where 3 is a
class K function proposed in Proposition 3.

The last step is to make sure the distance from R(t)
to the orientations of Mgp (any R. € SO(3) satisfy-
ing ej R e3 = 1) is bounded by some class K function
over € for all ¢ > 0. Since R, is a special orthogo-
nal matrix, R. can be represented by one parameter
set ¥ € [-m, 7], where e] R, = [cost,—sine,0],
eg Ry = [sin), cos 1, 0] and ed Ry = eq . Let (a1, a2, as)
and (by,be,b3) denote the first and second columns of
RT, respectively. Observe that the Frobenious norm of
the matrix can be represented by the trace operator,
[15], and that

infypel—mndr(R, Ry) =3 — 1 — 63TRT63

where 7 = /(a1 +b2)2+ (a2 — b1)2. Since R is
in special orthogonal group, det(R) = 1, and 1 —
eaRTes < coe/An(P,), T is lower bounded by
r > /4 —40(cae/An(P,))2. The lower-bound is well
defined since € < € by the assumption. By substituting
the lower-bound for 7, infyci—rndr(R, Ry) < Ba(e)
holds where B4(e) is a class K function defined as
2 — /4 —40(c26/An(Py))? + €. Hence, Hx(t)H?wf <
i
oA (Py)e + B1(v/€)? + Ba(e) for all t > 0, and so M,
is a stable set. O

Attractiveness to the set of equilibrium, M/ | the union

eq’
of MJP and MZ-]:W, is shown in the following proposition.

Proposition 6 Mch s an attractive set with respect to
(16-18).

PROOF. Let U be a bounded open neighborhoood of
Mefq such that z(0) € U, and g : [0,00) — [0,00) be a
twice differentiable function defined by g(t) := V(x(¢))



using V in (23). Since g(¢) is lower bounded and §(¢t) < 0

for allt > 0 by (25), lim;_ fo t)dt exists and is finite.
The second derivative of g, is expressed as § = —2vPyv,
where v := (11, 112) such that vy := R(ez3xw) and vy := 17
as given in (24). Observe that 7y = RO (es X w) + R(e3 x
W), and Uy = 1), where 7 and w are given in (16-18). Since
the trajectory is bounded in some compact set, €., as
shown in Corollary 4, §(t) is also bounded for all ¢ > 0.
Therefore, ¢ is uniformly continuous, and by invoking
Barbalat’s lemma [16], lim; o ¢ = 0 holds. Since P
in (26) is chosen to be positive definite by satisfying
Lemma 2, lim;_, ||v(t)|| = 0 holds, which infers that
lim; o0 [[7(t)||]2 = 0 and limy—y o0 (w? + w3) = 0.

In addition, lim;—_, o ||v|]2 = 0 also holds as v = ny + 1y
is defined in (9). Let g¥ : [0,00) — R be defined as
g?(t) := v;(t) where v; is i—th component of v, then
limy o0 fot g¥(t)dt exists and is finite where g; = e, v.
Also, gl( ) is bounded for all ¢ > 0 since §! := e, #, where
¥(t) = 1Mo + ly24, is a function of bounded quantltleb
according to Corollary 4. By invoking Barbalat’s lemma,
limy 00 g7 () = 0 holds, and so limy_, ||0(¢)|]2 = 0
holds. Observe that

. . 2T 1 . _
tlirrolo( YRésR ' e3) tlggov(t) 0

holds since lim; . |[7]|2 = 0 and limy_, o (W? +w3) = 0.
Therefore, lim;_,+ e3 X R e3 = 0 holds, or equivalently,
limy_y o0 6;R63 =1or —1.

Now, pick € < € as in the proof of Theorem 5, then there
exist 77 > 0 such that if ¢ > T, then |wi ()wa(t)] < €
and Hx(t)H?wf < e+ ws(t)? holds. By invoking the com-
parison lemma (Lemma 3.4 in [16]) to the dynamics for
ws in (18), there exist ¢ > 0 and T» > T such that
if t > T5, then |w3(t)| < cze, and by invoking Proposi-
tion 3, ||ac(t)\|?v[f < €+ c3B1(e)? for all t > Ty. Hence,

limy 00 Hx(t)||?v[f =0forall z(0) eU. O

The first main theorem follows.

Theorem 7 lep 18 an almost globally asymptotically
stable set with respect to (16-18).

PROOF. It is shown that M is locally stable in The-
orem 5 and M/ f is globally attractive in Proposition 6.

First the hnearlzatlon around M7 is considered. Pick

(0,0, Riny,0) € MZJ;U, and linearize (16-18) around this
point. Observe that the linearized model for (R, w) can
be derived into a second order differential equation

(1,22, 23) € R3,

:C"l 7bw 'Il +
T2 | = —TCL’Q + yre |- (29)
T3 0

This is similar to the linearization around an inverted
equilibrium for a 3D pendulum in [3] except that (29)
has a damping term. There are two positive eigenval-
ues, two negative eigenvalues, and two zero eigenvalues.

Since there are two positive eigenvalues, M l{w is an un-
stable set. Now, it is enough to show that the region of
attraction for M, i{w is a set of measure zero. The two zero
eigenvalues correspond to the yaw rotation which is in-
variant in M7 . and so the center manifold is contained

inuv?
inM zfm} Therefore, all the trajectories near (0,0, Riny, 0)

will diverge except the two-dimensional stable submani-
fold. This holds for any (0,0, R,,0) € M/ sothe stable

v
submanifold has Lebesgue measure zero [17]. A similar
argument can be found for the smooth control design in

[4]. Hence, M{fp is an AGAS set. O

6 Adaptive Controller for a Bounded Uncertain
Drag Coefficient

The AGAS property of the partial feedback linearizing
controller was proven assuming perfect knowledge of the
drag coefficient, which is not practically desirable. Nev-
ertheless, it is interesting to observe that for any given
by > 0, there exists at least one partial feedback lineariz-
ing controller to make the set, M, up7 AGAS. By exploiting
this fact, an adaptive controller is designed for a bounded
uncertain drag coefficient. Assume that b,, € Ij,, where
Iy := [b,,, bw], is bounded with b, b,, > 0. Now consider
the following controller

u(x) == AT(R)( L? 771(:0 b ) — Kn(x)) — kyweaws  (30)
R 0 if fa(x )<0and3 by,
by =1 0 if f4(z) > 0 and b= b, (31)

Lfy(x) otherwise

where I' > 0 is the adaptation gain, and L? m (m,gu,) is

the same as in (10), with by, instead of by,

falz) = kaZnTPBC(Cl(R)ng/m + C3(R)w)
—wTI_l?wRT(ng — aR(Wry)),

and with initial condition, Bw(O) € Ip.

Theorem 8 Mjp 18 an almost globally asymptotically
stable set with respect to the closed loop dynamics with
the adaptive controller in (30-31).

PROOF. Since the S matrix in (27) is a smooth func-
tion over b,,, there exists A3, (S) := maxp, e, An (S (by))-
Now, pick k; > A}/(S)/Am(Q); then, by Lemma 2,

Py (Ew) from (26) is a positive definite matrix for any

by € Ip. Now, consider Vi : D x I, — R defined as



Vi(2,by) == V(2) + D182 /2 where by, = by, — by, and
V(x) is (23). By taking the derivative,

o= =0 P + fa@)by + T 50k, (32)

holds, and by substituting the adaptation law in (31),
Vi(2,by) < —VTPf(/l;w»V holds for all z € D as
f4(x)gw < 0 for Bw = band gw = b. Observe that Propo-
sition 3 and Corollary 4 still hold since V (z) < V4 (x,i)\w)
and V (z(t)) < 0 for all ¢ > 0. Therefore, MJP is also a

stable set, using the same argument as in Theorem 5.
Attractiveness to the equilibrium set, M/ | is proven dif-

eq’
ferently. Let A%, (Py) be defined as ming Am (P (by))

where )\m(P) is the minimum eigenvalue of P, then
[lv(t)]3 < —Vi/A%, (Pf) holds for all ¢t > 0. Therefore, v
is in the £2? space since

/ T U Tu(t)dt < (Vi(0) - Vi(00)) /A5 (Py)

where Vi(oo) = limyyeo Vi(2(t),bw(t)), which is
well defined as VlA is lower bounded. In addition,
llv()]13 < Vi(z(0),by(0)) /N5, (Pf) for all t > 0 indi-
cates that v is in the £ space as well. Since b, is
bounded by the projection-based adaptive rule in (31),
v(t) can be shown to be a bounded function as well.
Therefore, lim;_, ||v|]2 = 0 by invoking the corollary
of Barbalat’s Lemma (Corollary 2.9 in [23]). Now the
same argument of acquiring lim;_, . |0(¢)||]2 = 0 holds
as by, is bounded, which infers that lim; o, el Rez = 1
or —1. Finally, considering the ultimate bound for w3 (t)
as in the proof of Proposition 6, M(fq can be shown to
be asymptotically attractive.

Finally, the linearization around Mi]:w on each by, € I
exhibits two negative eigenvalues, indicating instability
of Mi];w with the Lebesgue measure zero stable sub-

manifold, as in Theorem 7. Hence, Ml{p is an AGAS
set. 0O

7 Application to VCP Reference Trajectory
Tracking

In this section, a direct application to the adaptive
AGAS controller in (30) is considered to make the VCP
follow a reference trajectory. Suppose that a continu-
ously differentiable trajectory in the R3 space is given as
¢ € C?(R,R?), where C?(R,R?) is a set of continuously
twice differentiable functions. Assume that the deriva-
tives of the trajectory are bounded by some M > 0,
such that ||¢(t)|]2 < M and ||o(¢)||2 < M.

The objective is to make the VCP of the vehicle fol-
low the reference trajectory. Defining error dynamics as

& =m —¢and & =2 — ¢, and with £ = (&, &2) € RO,

then a feedback controller using & is proposed:
u = AT(R)(~L3n1 (2, by) — KE(2) + ) — kuweaws, (33)

where L?cm(as,gw) is defined as in the controller in (30)

and the adaptation rule in (31) is modified such that
only n in f4(z) is replaced with £ and not 7s.

For any given set point, ¢g € R3, by setting ¢(t) = ¢o,
the error £(t) almost globally exponentially converges to
0, and w(t) almost globally asymptotically converges to
0 using the above controller.

7.1  VCP Trajectory following
The VCP error dynamics for £ using (33) are

§ = (Ac = BeK)E = by Bee(§, R, w) (34)
(& R,w) = (CL(R)(& + ) + Ca( R)w).

Suppose that the gain K is chosen by solving CARE of
(A + kelsxes, Be, Qc, Re) for k. > 0, then all the real
parts of the eigenvalues of (A.— B.K) are upper bounded
by —k.. Let V1 be defined as in Theorem 8 by replacing
n with £, then the derivative is computed as

. 1 ~ . .
Vi(@) < ~ellvlB=kdm(PYIEIE o (1. Bud + md)
where ¢ = A}, (Py),and z € ({, R,w), and v = (11,1) €

R? is redefined with 11 = R(e3 X w) and vy = £. In
addition, the upper bounds for V' can be formulated as

Vi(2) < —(c+ keAm(P))IIE]IZ = [vallz(ellallz — u(M))

. 2u(M 2
< (et kAP it 3 > 2
where (M) = (b, + m)/(mly)M. Applying the

above inequalities, it can be shown that there exists
T > 0 such that if ¢ > T, then ||v|l2 < 2¢/(l7) +
2201 (P)pu(M)? ) (? X (Py)). Therefore, ||€]2 and ||w]|2
are ultimately bounded.

The extra control gain, k., in addition to the LQR pa-
rameters, R. and @, is used to directly lower the real
part of the eigenvalue of (4. — B.K) in (34). In the ideal

case (when b, is zero or equivalently using the partial
feedback linearization controller), the tracking error,
[|€]|2, converges exponentially to zero with a guaranteed
decaying rate of —k.. A case study with two different k.
gains shows that the parameter error becomes relatively
small (within 0.02% of its true value, for both cases),
and a faster convergence to the same error bound is
achieved by higher k.. The detailed analysis on the re-
lation between parameter convergence and the tracking
performance remains the subject of future work.
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Fig. 2. Trajectories using different gains k. = 0, 5.

7.2 Simulation Results

In this section, a tracking controller is applied to follow
a Lissajous curve. The desired trajectory, ¢(t) € R3, is

¢ (t) :=rqcos(awst + 0) (35)
¢y (t) :=1rq cos(bw;t) (36)
¢.(t) :=0.3, (37)

where rg = 0.1,a = 2,b = 3, and wy = 27/Tperiod, With
Tperioa = 1 s. The model parameters for the Harvard
RoboBee are given in [11], including b,, = 2.0 x 107%
Ns m~!. The bounds for the drag coefficients are given
as Iy = [0.4b,,,4b,,] allowing higher upper bound. The
tracking controller in (33) is applied, with the gain K
designed using Q. = diag(100,100, 100, 10,10, 10) and
R, = 0.011343, with two different gains, k. = 0 and
k. = 3. The adaptive gain is chosen with I' = 0.3 for
(31). A small feedback gain k,, = I,, = 0.45 x 1079 is
chosen for yaw torque control. In this example, o = 3 is
selected (such that the VCP of the vehicle is four times
higher than the CoP position). The chosen initial states
are r = (0,0,0.05),v = w = 0, and R(0) is represented
by the axis-angle representation, with angle 6y = 7/4
and axis (1,0,0).

The simulation results are shown in Fig. 2a. The tra-

jectory of the VCP using the gain k. = 3 is shown in
blue, with the reference trajectory (a Lissajous curve at
z = 0.3) shown in red. The CoM of the vehicle during
VCP tracking is shown with a dotted blue line. Fig. 2a
shows a forward simulation over 10.0 seconds (with over-
laid orientations for the RoboBee shown over the first 0.5
seconds), demonstrating attitude changes as the VCP
approaches the reference trajectory. A projection to the
(z,y) plane is shown in Fig. 2b, where the red curve rep-
resents the reference curve, the green curve corresponds
to the VCP trajectory for k. = 0, and the blue curve
corresponds to k. = 3. The estimated drag coefficients
are shown in Fig. 2c for both k. gains. The parameter
error is bounded to 0.02% of its true value after 0.5 sec.

8 Conclusions and Discussion

In this paper, a new coordinate system for a flapping-
wing vehicle is proposed, which takes advantage of the
averaged aerodynamic drag acting on the vehicle. A state
feedback controller is designed to regulate a virtual con-
trol point (VCP) using a near-identity diffeomorphism
which permits partial feedback linearization. The sta-
ble zero dynamics resembles the 3D pendulum dynamics
where VCP serve as a pivot. The almost global asymp-
totic stability of the upright configurations is shown
for the closed loop system. Next, an adaptive controller
is proposed, to preserve the AGAS property given the
bounded uncertainty of the drag coefficient. Finally, a
VCP tracking controller is designed to achieve ultimate
boundedness.

One of the advantages of the VCP based control frame-
work is that the controller requires relatively small yaw
torque as the VCP output dynamics is independent of
the yaw torque control. This is beneficial to FWMAV
control as yaw torque is often a particularly weak torque
axis for [2,9,31,13]. In addition, the proposed adapta-
tion algorithm in (31) can be naturally combined with a
deadzone method [23] to enhance the robustness to the
bounded unmodeled disturbance.
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