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Abstract—The biomechanics community has recently made
progress toward understanding the role of rapid arm movements
in human stability recovery. However, comparatively little work
has been done exploring this type of control in humanoid
robots. We provide a summary of recent insights into the
functional contributions of arm recovery motions in humans
and experimentally demonstrate advantages of this behavior
on a dynamically stable mobile manipulator. Using Bayesian
optimization, the robot efficiently discovers policies that reduce
total energy expenditure and recovery footprint, and increase
ability to stabilize after large impacts.

I. INTRODUCTION

The successful deployment of mobile humanoid robots in
dynamic environments will require solutions to many chal-
lenging hardware, perception, and control problems. One par-
ticularly challenging control problem is maintaining stability
in the face of postural perturbations, e.g., caused by impacts or
unpredicted terrain changes. The best solutions to this problem
will exhibit a high degree of resourcefulness, exploiting many
actuators and innate dynamics to achieve rapid, robust, and
efficient stabilization. Indeed, a typical adult human exhibits a
remarkable ability to generate whole-body recovery strategies.
These strategies frequently involve rapid arm movements that
occur simultaneously with activation of lower limb muscu-
lature [1], [2]. Biomechanics researchers have recently made
significant progress toward understanding the functional con-
tributions of these movements under different experimental
conditions [3], [4], [5], [6]. However, relatively little work has
focused on developing a computational understanding of this
behavior by producing controlled arm responses in artificial
systems.

This paper provides an overview of previous research on
upper body recovery motions and highlights the practical and
scientific value of developing solutions to this problem. To-
ward the latter goal, we present experimental results involving
a dynamically balancing mobile manipulator that learns rapid
open-loop arm responses to impact perturbations by perform-
ing an efficient policy search using Bayesian optimization [7],
[8], [9]. The resulting policies exhibit decreased total energy
expenditure, decreased recovery footprint, and an increased
ability to stabilize after large impacts.

Section II provides a review of previous investigations into
arm recovery motions in both humans and artificial systems.
Sections III and IV give a detailed account of two learning

experiments performed on a humanoid robot. Finally, in Sec-
tion V we discuss the possible implications of our results and
directions for future work.

II. BACKGROUND

A. Arm Recovery Motions in Humans

McIlroy and Maki [1] were perhaps the first to specifically
consider arm responses to external disturbances. In this study,
subjects stood upon a platform that delivered translational per-
turbations while shoulder and lower leg muscle responses were
measured. They observed that the magnitude of the shoulder
response was correlated with the magnitude and direction of
the perturbation. Furthermore, the authors concluded that these
movements are unlikely to be startle responses because no
apparent habituation was present over multiple trials. Together,
these observations suggested a possible functional role of arm
movements in the recovery behavior.

Researchers have since begun to uncover more about the
functional contributions of the upper extremities during bal-
ance recovery. Marigold et al. [2] observed rapid elevation of
the arms during slip recovery in young adults. The authors
noted a marked change in responses after repeated exposure
to the same perturbation, suggesting that whole-body recovery
strategies can be short-term adaptive. Troy et al. [5] observed
a similar rapid elevation behavior in slipping experiments
performed on both young and old adults. Using a simplified
sagittal plane model, the authors concluded that arm responses
served to reduce trunk rotational velocity immediately follow-
ing the slip while repositioning the upper body center of mass
away from the rear support boundary.

Similar arm response characteristics have been observed for
tripping perturbations [4], [6] and hip disturbances [10], [3].
Misiaszek and Krauss [3] observed that recovery responses of
leg musculature increased in magnitude when arm motions
were voluntarily suppressed. Several studies have demon-
strated significant differences between the responses of young
and old subjects [4], [5], [11]. Generally speaking, younger
adults who were capable of faster movements and reduced
reaction times tended to produce fast movements that affected
the body angular momentum, while older subjects tended
to resort to more protective strategies such as grasping and
bracing.

Perhaps the most complete functional analysis to date is
from Pijnapples et al. [6]. Using a 3D physical model, the



authors analyzed the contribution of arm responses in tripping
experiments by calculating what the body angular velocity
would have been had the arms not been present between
the perturbation onset and recovery step. The results of this
analysis suggest that, for tripping perturbations during normal
walking, arm recovery motions contribute most significantly to
controlling rotation in the transverse (yaw) plane which helps
position the body to successfully take a recovery step [6].
However, because tripping perturbations induce a rotation in
the transverse plane toward the tripped foot which must be
counteracted, it is possible that similar analyses for a different
perturbation modality would produce different results.

B. Arm Recovery Motions in Artificial Systems

There is a very rich literature devoted to robust humanoid
locomotion and recovery from perturbation. However, rela-
tively little work exists which aims to create postural stability
controllers that exploit articulated upper bodies, especially
in the context of rapid balance recovery. That is not to say
this field has not enjoyed much success. Indeed, for the case
of bipedal postural stability, the coordination of ankle, hip,
and stepping recovery strategies has yielded impressive results
on real systems (e.g. [12]). However, given our increasing
understanding of human balance recovery, there is reason to
suspect that coordination of the arms may offer significant
advantages.

Several researchers have studied model systems that have
provided valuable insights. Pratt et al. [13] introduced the
Linear Inverted Pendulum Plus Flywheel model that abstractly
models the angular momentum induced by upper body motions
as a flywheel about the body center of mass. Atkeson and
Stephens [14] used a multi-link pendulum model to show
that different impact recovery strategies can arise from a
single quadratic optimization criterion, suggesting that whole-
body responses in humans may similarly be the product of a
unified control scheme. A recent paper from Nakada et al. [15]
described an increase in balance recovery of a simulated biped
using a learned arm rotation strategy. Other related work has
considered quasi-static contributions of free arm movements
in real systems [16], [17].

In the character animation literature, several researchers
have produced controllers for generating whole-body recovery
responses. Kudoh et al. [18], [19] formulated a quadratic
programming problem to produce arm swinging motions that
stabilized the system after impacts. Shiratori et al. [20] used
human motion capture data during tripping experiments to
create controllers that produced human-like responses in char-
acters that were tripped under different initial conditions. Mac-
chietto et al. [21] described a method for directly controlling
linear and angular momenta that produced realistic whole-
body balance recovery strategies for standing characters. These
results are among the most impressive in the literature, but it
remains unclear how they will translate to robotic systems
with imprecise sensors and models, constrained actuators, and
lower bandwidth control.

III. EXPERIMENTS

We performed two experiments to quantify the advantages
of whole-body recovery strategies in a real humanoid robot
with limited exposure to a perturbation stimulus. These exper-
iments involved a dynamically balancing mobile manipulator
and an apparatus designed to impart controlled impact per-
turbations to the upper torso of the robot. After describing
the experimental hardware in Sections III-A and III-B, we
outline our optimal control formulation in Section III-C and
our algorithmic approach in Section III-D.

A. The uBot-5

The uBot-5 is an 11-DoF mobile manipulator developed at
the University of Massachusetts Amherst. The uBot-5 has two
4-DoF arms, a rotating trunk, and two wheels in a differential
drive configuration. The robot stands approximately 60 cm
from the ground and has a total mass of 19 kg. The robot’s
torso is roughly similar to an adult human in terms of geometry
and scale, but instead of legs, the uBot has two wheels attached
at the hip. The robot balances by controlling its wheels using
a linear-quadratic regulator (LQR) with feedback from an
onboard inertial measurement unit (IMU) to stabilize around
the vertical fixed point. This controller has proved to be robust
throughout five years of frequent usage and it remains fixed
in all of our experiments.

The robot’s wheeled base permits a fast and energy efficient
solution to upright stability that is achieved using well under-
stood techniques from optimal control. This makes the uBot a
unique and attractive experimental platform for this problem
because it allows one to assess the influence of arm motions on
the stabilized system without first solving the difficult legged
recovery problem.

B. Impact Pendulum

The robot was placed in a balancing configuration with the
dorsal side of its torso aligned with a 3.3 kg mass suspended
from the ceiling (Figure 1). The mass was pulled away from
the robot to a fixed angle and released, producing a controlled
impact between the swinging mass and the robot’s upper torso.
This device is similar that used by Hasson et al. [22] in a
human study aimed at developing predictive models for step
recovery after impact perturbations. The robot was attached to
the ceiling with a loose-fitting safety rig designed to prevent
the robot from falling completely, while not affecting the
performance of the controlled response.

Impacts were detected using the robot’s onboard IMU and
arm responses were initiated within approximately 50 ms. The
arm initial conditions were the same for each experiment and
the shoulder and elbow pitch joints were controlled using
a cubic spline. The spline was parameterized by a single
waypoint for each joint along with two time parameters: the
time-to-waypoint and time-to-home.

Two learning experiments were performed using different
impact magnitudes. We aimed to evaluate the hypotheses that
the robot could learn to exploit dynamic interactions between
its arms and the LQR stabilized base to:
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Fig. 1: The uBot-5 situated in the impact pendulum apparatus.

1) reduce the spatial footprint of the recovery,
2) reduce the total energy expenditure, and
3) increase robustness to large perturbations.
In the first experiment, the robot was situated at the base

of the impact pendulum, and the release angle was chosen
such that the robot could reliably recover balance using only
the wheel LQR controller. The momentum of the pendulum
mass prior to impact was estimated to be 5.6 N·s with a
measurement error of ±0.8 N·s by analyzing video footage of
the experiment. The impact duration could not be accurately
inferred from the video, but it appeared to be between 1 and 2
video frames, or 1/25 to 2/25 seconds. In the second experi-
ment, the impact magnitude was increased so that a fixed arm
policy would fail to stabilize the system a significant fraction
of the time. The perturbation in this case was approximately
6.7± 1.0 N·s.

C. Optimal Control Formulation

To encourage spatially and energetically efficient solutions,
we define a simple cost function:

J(x̄) =

∫ T

0

[
x2wheel(t) + ẋ2wheel(t) + g(x(t))I(t)V

]
dt, (1)

where xwheel(t) and ẋwheel(t) are the wheel position and
velocity at time t, respectively, I(t) is the total absolute
current being drawn by all motors, and V = 13.1 volts is
the system voltage. The notation x̄ denotes a state trajectory
{x(0),x(dt), . . . ,x(T )}, where the state vector x(t) contains
the IMU readings, a failure bit, and positions, velocities, and
motor currents for all joints at time t. The function g(x(t))
captures the additional energetic cost associated with a failure
to recover. If x(t) ∈ FailureStates, then g(x(t)) = 0.005.
Otherwise, g(x(t)) = 0.001. A state x(t) ∈ FailureStates
if and only if the state x(t) is detected as a failure or ∃t′ < t
such that x(t′) ∈ FailureStates. Failure states were detected

reliably as larges spikes in the IMU data. In all experiments,
T = 3.5 seconds and the sampling frequency was 100 Hz.

Arm motions were constrained to be symmetric in the
sagittal plane, so a single cubic spline parameterization de-
scribes the motions for both arms. The spline parameters are:
θ = [θshoulder, θelbow, twp, tf ], where θshoulder and θelbow are
the shoulder and elbow waypoint positions, respectively. The
remaining two time parameters describe the desired time to
reach the waypoint positions and the time to return to the start-
ing configuration. Using prior knowledge about what policies
are feasible, these parameters are conservatively constrained:

1.5 rad ≥ θshoulder ≥ −1.5 rad (2)
1.0 rad ≥ θelbow ≥ −1.0 rad (3)

1.0 ≥ twp ≥ d(θshoulder, θelbow) (4)
1.5 ≥ tf ≥ d(θshoulder, θelbow) + twp, (5)

where the function d(θshoulder, θelbow) returns the minimum
time required to move to the waypoint positions given the
maximum joint velocity, 5π/4 rad/s.

A model of the system is not available, and the robot is
only able to acquire noisy samples of (1), Ĵ(θ) ∼ J(θ) + ε,
where ε ∼ N (0, σ2

n). We write J(θ) as a function of the policy
parameters since we assume the initial conditions remain fixed
across trials.

D. Bayesian Optimization
We employed a Bayesian optimization algorithm to optimize

the policy parameters in both experiments. Our selection of
this general class of algorithms is motivated by the high
experimental cost associated with obtaining samples in the
impact pendulum. These algorithms involve two major steps:
1) computing a posterior distribution over cost functions
given all observations, and 2) selecting the next best policy
parameterization to try by optimizing an acquisition crite-
rion computed on the posterior. For an excellent tutorial on
Bayesian optimization, see Brochu et al. [9].

1) Prior Representation: We represented the prior distribu-
tion over cost functions as a Gaussian process (GP). A GP is
defined as a (possibly infinite) set of random variables, any
finite subset of which is jointly Gaussian distributed [23]. To
fully specify the GP, one must define a mean function and a
covariance function:

m(θ) = E[J(θ)]

k(θp,θq) = E[(J(θp)−m(θp))(J(θq)−m(θq))].

Given these functions and a set of observations, D =
{(θ1, Ĵ(θ1)), . . . , (θN , Ĵ(θN ))}, both the log likelihood of
the data given the model and the Gaussian posterior,
P (Ĵ(θ′)|θ′,D), for a point θ′ can be computed straightfor-
wardly [23].

We use a squared exponential covariance function,

k(θp,θq) = σ2
f exp(−1

2
(θp − θq)>M(θp − θq)) + σ2

nδpq, (6)

where σ2
f and σ2

n are the signal and noise variance, respec-
tively, M = diag(l−2) is a diagonal matrix of length-scales,



l = [l1, l2, l3, l4], and δpq is the Kronecker delta function.
Thus, our covariance function has six hyperparameters. To
avoid a potentially laborious tuning process and allow for
greater flexibility, the hyperparameters were automatically
optimized after each trial with respect to the maximum a
posteriori (MAP) criterion. To achieve cost scale invariance,
the maximum likelihood mean was computed analytically after
each trial and used in the log likelihood computation [8].

A prior was placed over the logarithm of the length-scale
hyperparameters: log(l) ∼ N (0, 32I). Intuitively, the length-
scales describe how much each policy parameter must be
changed before a significant difference in cost is likely to be
observed. Although this prior is quite broad for our applica-
tion1, it provides a flexible way to constrain the optimization
process in the early stages of learning [8].

The gradients of the log likelihood and log prior terms were
computed analytically and the optimization of hyperparame-
ters was performed using the NLOPT [24] implementation
of the Method of Moving Asymptotes [25]. After each trial,
the hyperparameters were optimized starting from the MAP
estimate from the previous trial, and 30 random restarts were
performed to decrease the chance of arriving at a poor local
optimum.

2) Acquisition Criterion: Given the optimized posterior
distribution, we use the maximum expected improvement
criterion [26] to identify the next best policy parameterization
to attempt. The expected improvement (EI) given the GP
model is a function of the policy parameters:

EI(θ) = (µ− − µ(θ)− ξ)Φ(Z) + σ(θ)φ(Z), (7)

where

Z =
µ− − µ(θ)− ξ

σ(θ)
, µ− = min

i=1:N
µ(θi),

µ(θ) and σ(θ) are the mean and standard deviation of the
posterior distribution over Ĵ(θ), and Φ(·) and φ(·) are the CDF
and PDF of the normal distribution, respectively. If σ(θ) = 0,
the expected improvement is defined to be 0. Intuitively, (7)
defines the expected reduction in cost over the best policy tried
so far. The parameter ξ balances exploration and exploitation,
where ξ = 0 leads to exploitative behavior that can leave
points with high variance unexplored. In our experiments, ξ =
0.1 · σf .

We again used NLOPT to perform the maximization of
(7) while satisfying the inequality constraints on the policy
parameters, (2)–(5). Forty random restarts were performed and
the maximum among these was used to select the next data
point.

IV. RESULTS

We applied the Bayesian optimization algorithm in both
high impact and low impact pendulum configurations. A
total of 35 trials were performed in the high impact case
and 30 in the low impact case. After the learning trials, a

1Our maximum parameter range is 3 units while the prior states that there
is about a 95% chance that the length-scales are between 403 and 0.002.

greedy policy was selected by maximizing the probability of
improvement [27] with respect to the posterior distribution:

P (Ĵ(θ) ≤ µ−) = Φ

(
µ− − µ(θ)

σ(θ)

)
. (8)

The greedy policies were θ∗low = [−0.681, 0.681, 0.174, 1.5]
and θ∗high = [−0.562,−0.562, 0.143, 1.478] for the low and
high impact cases, respectively. The symmetry in the shoulder
and elbow displacements appears to be a consequence of the
constraints (4,5) and the desire to maximize joint displace-
ments over a short initial response time. This symmetry was
not strictly observed during the learning process. Interestingly,
the rotations of the shoulder and elbow joints are opposite in
the low impact policy. This produces a contracted backward
arm motion as opposed to the extended backward arm motion
in the high impact policy. We also observed a 25% higher peak
shoulder torque 0.1 seconds post-impact for the high impact
policy.

To evaluate our three hypotheses regarding spatial footprint,
total energy, and robustness, we performed 10 trials using the
learned greedy policy and a control (fixed arm) policy for each
impact magnitude. The learned policies exhibited a 17.1%
reduction in average cost (1554.59 to 1288.34) in the low
impact case and a 61.6% reduction in average cost (4507.36 to
1728.64) in the high impact case. The fixed arm policy failed
to stabilize in 5 out of the 10 high impact trials. If we exclude
the failure trials from the high impact control experiment the
reduction in cost is 29.7% (2458.98 to 1728.64).

A. Efficiency Gains

We observed a statistically significant decrease in the recov-
ery footprint using the learned arm motions for both impact
magnitudes. The wheel trajectories in Figure 2 illustrate this
difference. Perhaps more surprisingly, we also observed a
statistically significant reduction in total energy expenditure
when using the learned arm recovery motions. The total
energy was calculated as E =

∫ T

0
I(t)V dt, where I(t) is

the total absolute current through all motors at time t, and
V = 13.1 volts. Table I summarizes the reduction in average
energy expenditure. Since we could not quantify the true
energetic requirements of recovering from a failure, we only
included the successful fixed arm trials in these statistics.
Thus, the energy savings reported for the high impact case
should be viewed as very conservative. These data suggest
that the reduction in wheel motor energy consumption more
than compensates for the additional energy consumed by the
shoulder and elbow motors in the learned policies.

B. Stability Gains

During the evaluation of the learned high impact policy,
the robot successfully recovered in 10 out of 10 trials. In
contrast, the robot only recovered in 5 out of 10 trials with
the control (fixed arm) policy. Figure 3 compares the learned
response to a failure control trial. It is interesting that a
single policy and impact magnitude can produce different
stabilization results. Careful analysis of the experiment video
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Fig. 2: Wheel position and velocity trajectories for the learned
and fixed arm policies in both the low impact (above) and high
impact (below) cases.

TABLE I: Comparison of mean energy expenditure averaged
over 10 trials. The 5 fixed arm failure trials were excluded
from the high impact data. Thus, we expect the true energetic
gain in this case to be much larger than reported.

Fixed Arms Learned Response Behrens-Fisher

Low impact 194.03 joules 176.37 joules p < 0.0001

High impact 242.16 joules 215.67 joules p = 0.0046

showed that the pendulum motion varied very little between
trials. However, the state of the robot’s slight back-and-forth
balancing motion at the time of impact seemed to be loosely
correlated with the trial outcome—though not perfectly so.
Thus, the system appears to exhibit some degree of sensitivity
to initial conditions. We have not yet ascertained whether the
robot can distinguish between these cases. This suggests that it
may be necessary to characterize the variance of each policy
separately, allowing the robot to select predictable recovery
strategies when the stakes are high.

The learned policies were successfully deployed during
unconstrained operation of the robot. A simple filter on IMU
data allowed the robot to accurately classify impacts that were
similar to those seen during learning. The robot successfully
responded to various uncontrolled impact perturbations: small
bumps caused by a person walking into it (no arm response),
pushing the robot (low impact arm response), kicking the robot
(high impact response), and throwing a large exercise ball at
the robot (high impact response).2

2A video is available at http://www.cs.umass.edu/∼scottk/videos.
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Fig. 3: Comparison of the recovery behavior without (left)
and with (right) arm recovery motions after a large impact
perturbation. The bottom three panels on the left outlined
in red indicate the point of failure when the safety rig was
engaged.

V. DISCUSSION AND FUTURE WORK

Our results suggest that the integration of arm motions in
balance recovery can reduce the recovery footprint and total
energy expenditure, and increase the robot’s ability to stabilize
after large perturbations. Although the uBot’s wheeled base
is very different from that of a bipedal humanoid, there is
considerable practical value in being able to experimentally
determine the dynamic effects of upper body responses using
this simpler system. In addition to having direct practical im-
plications for wheeled mobile manipulators [28], [29], [30], we
expect the observed benefits to translate across morphologies.
Indeed, our results agree with previous observations that the
magnitude of human lower body recovery responses increased
when arm motions were suppressed [3].

This general problem also has several attributes that
make it interesting from a machine learning perspective:
expensive evaluations, nonlinearity, stochasticity, and high-
dimensionality. In our experiments, a low-dimensional policy
space was identified, allowing the robot to apply a Bayesian
optimization algorithm to discover effective policies in a small
number of trials. Another benefit of this approach is that we are
able to interpret the robot’s state of knowledge. For example,
by examining the MAP length-scale hyperparameters, we can



learn something about the relative sensitivity of the cost
with respect to the policy parameters. The length-scales after
learning in the high impact experiment suggest that the cost is
most sensitive to changes in initial response time and shoulder
angle, with total movement time and elbow angle having
considerably lower sensitivity.

In future work, we will consider a larger range of initial
conditions. For example, we expect that the arm configurations
of a mobile manipulator will vary considerably under normal
operation and that solving this problem will require not
only the ability to generate rapid collision-free arm motions,
but also apply knowledge about successful policies to avoid
vulnerable configurations. We will also address the problem
of sensitivity to initial conditions observed in higher energy
impact situations. In cases where there is a significant chance
to destabilize, efficiency concerns should fall behind the ability
to predictably recover, and the robot’s ability to make such
judgements will depend on its ability capture the shape of the
cost distribution at different points in policy space.

VI. CONCLUSION

Humanoid postural stability is an important and difficult
control problem that has received much attention. Despite
significant successes, the benefits of exploiting dynamic arm
motions in balance recovery have not been fully understood.
Our experiments with a humanoid robot demonstrate the
ability to learn recovery policies in a small number of trials,
and that coordinated arm motions can increase the efficiency
and robustness of responses to impact perturbations.
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