Bayesian Optimization of Soft Exosuits Using a Metabolic Estimator Stopping Process


M. Kim, et al., “Bayesian Optimization of Soft Exosuits Using a Metabolic Estimator Stopping Process ,” International Conference on Robotics and Automation (ICRA). 2019.
icra-exo-stopping.pdf864 KB


Recent human-in-the-loop (HIL) optimization studies using wearable devices have shown an improved average metabolic reduction by optimizing a small number of control parameters during short-duration walking experiments. However, the slow metabolic dynamics, high measurement noise, and experimental time constraints create challenges for increasing the number of control parameters to be optimized. Prior work applying gradient descent and Bayesian optimization to this problem have decoupled metabolic estimation and control parameter selection using fixed estimation intervals, which imposes a hard limit on the number of parameter evaluations possible in a given time budget. In this work, we take a different approach that couples estimation and parameter selection, allowing the algorithm to spend less time on refining the metabolic estimates for parameters that are unlikely to improve performance over the best observed values. Our approach uses a Kalman filter-based metabolic estimator to formulate an optimal stopping problem during the data acquisition step of standard Bayesian optimization. Performance was analyzed in numerical simulations and in pilot human subject testing with two subjects that involved optimizing six control parameters of a single-joint exosuit and four parameters of a multi-joint exosuit.